Chemistry of Heterocyclic Compounds

, Volume 47, Issue 12, pp 1598–1600 | Cite as

Catalytic synthesis and structure of 2-methyl-1,5-dihydro-4,1,3-benzoxadiazepine

  • L. Golomba
  • E. AbeleEmail author
  • S. Belyakov

Seven-membered heterocyclic systems are widely used in organic synthesis and as biologically active substances [1]. The properties and reactions of these compounds have been presented in numerous reviews [2, 3, 4, 5, 6, 7]. Amongst these, two studies can be identified which relate to a seven-membered heterocycles with three heteroatoms in positions 1, 2, and 4 [6, 7]. Also to be noted are the synthesis of 3,5,7-trisubstituted 4,7-dihydro-1,2,4-oxadiazepines from enones in basic medium [8] and the synthesis of 9-chloro-6-phenyl-5,7-diaza-4-oxa-spiro[2,6]non-5-en-8-one by the cyclocondensation of methyl 2-chloro-2-[1-(phenyl-carboxyimidoyl-aminooxy)cyclopropyl]acetate in the presence of NaH in acetonitrile [9].

However, the synthesis of benzo derivatives of 3-substituted 1,2,4-oxadiazepines has not been studied previously. Hence the aim of our work was to develop a simple and convenient method for preparing a derivative of this class of compound, i.e....


1,5-dihydro-4,1,3-benzoxadiazepine 2-iodobenzyl bromide palladium complex catalysis phase-transfer catalysis X-ray structural analysis 


The authors thank the European Social Fund (project No. 2009/0197/1DP1/ for financial support.


  1. 1.
    A. Levai, Heterocycles, 75, 2155 (2008).CrossRefGoogle Scholar
  2. 2.
    J. A. Smith, P. P. Molesworth, and J. H. Ryan, Progr. Heterocycl. Chem., 21, 491 (2009).CrossRefGoogle Scholar
  3. 3.
    E. J. Kantorowski and M. J. Kurth, Tetrahedron, 56, 4317 (2000).CrossRefGoogle Scholar
  4. 4.
    D. O. Tymoshenko, Adv. Heterocycl. Chem., 96, 2 (2008).Google Scholar
  5. 5.
    J. B. Bremner, Progr. Heterocycl. Chem., 15, 385 (2003).CrossRefGoogle Scholar
  6. 6.
    T. Tsuchiya, in: A. R. Katritzky, C. W. Rees, and E. F. V. Scriven (editors), Comprehensive Heterocyclic Chemistry II, Vol. 9, Pergamon, Oxford (1996), p. 309.Google Scholar
  7. 7.
    G. I. Yranzo and E. L. Moyano, in: A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, and R. J. K. Taylor (editors), Comprehensive Heterocyclic Chemistry III, Vol. 13, Elsevier, Oxford (2008), p. 399.CrossRefGoogle Scholar
  8. 8.
    C. Lassalvy, C. Petrus, and F. Petrus, Gazz. Chim. Ital., 111, 273 (1981).Google Scholar
  9. 9.
    M. W. Notzel, K. Rauch, T. Labahn, and A. de Meijere, Org. Lett., 4, 839 (2002).CrossRefGoogle Scholar
  10. 10.
    B. A. Martynov, S. A. Zhestkov, and I. V. Martynov, Zh. Org. Khim., 27, 61 (1991).Google Scholar
  11. 11.
    W. R. Dolbier, Jr., C. R. Burkholder, and M. Medebielle, J. Fluorine Chem., 95, 127 (1999).CrossRefGoogle Scholar
  12. 12.
    A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, and R. Spagna, J. Appl. Crystallogr., 32, 115 (1999).CrossRefGoogle Scholar
  13. 13.
    G. M. Sheldrick, Acta Crystallogr., A64, 112 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Latvian Institute of Organic SynthesisRiga LV-1006Latvia

Personalised recommendations