Advertisement

Chemistry of Heterocyclic Compounds

, Volume 47, Issue 12, pp 1565–1583 | Cite as

Pentacoordinated chlorosilanes with C,O-chelate ligands derived from N-methyl-N'-organosulfonyl-prolinamides*

  • A. A. Nikolin
  • D. E. Arkhipov
  • A. G. Shipov
  • E. P. Kramarova
  • N. A. Koval˙ˈchuk
  • A. A. KorlyukovEmail author
  • V. V. Negrebetsky
  • Yu. I. BaukovEmail author
  • A. R. Bassindale
  • P. G. Taylor
  • A. Bowden
  • S. Yu. Bylikin
Article

The reaction of amides RSO2-Pro-NHMe with ClCH2SiMe2Cl in the presence of (Me3Si)2NH gave pentacoordinated chlorosilanes RSO2-Pro-N(Me)CH2SiMe2Cl with an organosulfonyl group (R = Me, Ph, 4-ClC6H4, 4-BrC6H4, 4-MeC6H4, and 4-O2NC6H4) attached to the proline nitrogen atom. An alternative method for the preparation of these compounds comprises the cyclosilylmethylation of proline methylamide by dimethylchloromethylchlorosilane to give the previously unreported heterocyclic 2-sila-5-piperazinone system in the first step. The bicyclic silacyclane synthesized is 2-sila5-piperazinone condensed with a proline residue. The action of sulfonyl chlorides RSO2Cl leads to cleavage of the sila ring Si–N bond to give the desired chlorosilanes. The hydrolysis of these products, depending on the reaction conditions, gives either silyloxonium chlorides [RSO2-ProN(Me)CH2SiMe2OH2]Cl or disiloxanes [RSO2-Pro-N(Me)CH2SiMe2]2O. X-ray diffraction structural analysis showed that the silicon atom in the chlorides and silyloxonium chlorides is pentacoordinated due to an intramolecular O → Si bond and has distorted trigonal-bipyrimidal configuration. 29Si NMR spectroscopy showed that the disiloxanes and bicyclic sila-5-piperazinone have a tetracoordinated silicon atom.

Keywords

silacyclanes pentacoordinated silicon compounds X-ray structural analysis synthesis 

References

  1. 1.
    D. Kost and I. Kalikhman, in: Z. Rappoport and Y. Apeloig (editors), The Chemistry of Organic Silicon Compounds, Vol. 2, Part 1, J. Wiley, Chichester (1998), p. 1339.CrossRefGoogle Scholar
  2. 2.
    M. G. Voronkov, V. A. Pestunovich, and Yu. I. Baukov, Metalloorg. Khim., 4, 1210 (1991).Google Scholar
  3. 3.
    C. Chuit, R. J. P. Corriu, C. Reyé, and J. C. Young, Chem. Rev., 93, 1371 (1993).CrossRefGoogle Scholar
  4. 4.
    V. V. Negrebetsky and Yu. I. Baukov, Izv. Akad. Nauk, Ser. Khim., 11, 1912 (1997).Google Scholar
  5. 5.
    A. A. Macharashvili, V. E. Shklover, Yu. T. Struchkov, G. I. Oleneva, E. P. Kramarova, A. G. Shipov, and Yu. I. Baukov, J. Chem. Soc., Chem. Commun., 683 (1988).Google Scholar
  6. 6.
    D. Kummer and S. H. Abdel Halim, Z. Anorg. Allg. Chem., 622, 57 (1996).CrossRefGoogle Scholar
  7. 7.
    V. F. Sidorkin, V. V. Vladimirov, M. G. Voronkov, and V. A. Pestunovich, J. Mol. Struct. (Theochem.), 228, 1 (1991).CrossRefGoogle Scholar
  8. 8.
    Yu. E. Ovchinnikov, A. A. Macharashvili, Yu. T. Struchkov, A. G. Shipov, and Yu. I. Baukov, Zh. Strukt. Khim., 35, 1 (1994).Google Scholar
  9. 9.
    A. R. Bassindale, M. Borbaruah, S. J. Glynn, D. J. Parker, and P. G. Taylor, J. Organomet. Chem., 606, 125 (2000).CrossRefGoogle Scholar
  10. 10.
    A. R. Bassindale, D. J. Parker, P. G. Taylor, N. Auner, and B. Herrschaft, J. Organomet. Chem., 667, 66 (2003).CrossRefGoogle Scholar
  11. 11.
    B. Gostevskii, G. Silbert, K. Adear, A. Sivaramakrishna, D. Stalke, S. Deuerlein, N. Kocher, M. G. Voronkov, I. Kalikhman, and D. Kost, Organometallics, 24, 2913 (2005).CrossRefGoogle Scholar
  12. 12.
    K. D. Onan, A. T. McPhail, C. H. Yoder, and R. W. Hillyard, J. Chem. Soc., Chem. Commun., 209 (1978).Google Scholar
  13. 13.
    R. W. Hillyard, C. M. Ryan, and C. H. Yoder, J. Organomet. Chem., 153, 369 (1978).CrossRefGoogle Scholar
  14. 14.
    C. H. Yoder, C. M. Ryan, G. F. Martin, and P. S. Ho, J. Organomet. Chem., 190, 1 (1980).CrossRefGoogle Scholar
  15. 15.
    Yu. I. Baukov, E. P. Kramarova, A. G. Shipov, G. I. Oleneva, O. B. Artamkina, A. I. Albanov, M. G. Voronkov, and V. A. Pestunovich, Zh. Obshch. Khim., 59, 127 (1989).Google Scholar
  16. 16.
    V. V. Negrebetsky, P. G. Taylor, E. P. Kramarova, S. Yu. Bylikin, I. Yu. Belavin, A. G. Shipov, A. R. Bassindale, and Yu. I. Baukov, J. Organomet. Chem., 691, 3976 (2006).CrossRefGoogle Scholar
  17. 17.
    A. G. Shipov, E. P. Kramarova, and Yu. I. Baukov, Zh. Obshch. Khim., 64, 1220 (1994).Google Scholar
  18. 18.
    V. F. Sidorkin, E. F. Belogolova, and V. A. Pestunovich, J. Mol. Struct., 538, 59 (2001).Google Scholar
  19. 19.
    V. A. Pestunovich, V. F. Sidorkin, and M. G. Voronkov, in: Progress in Organosilicon Chemistry, Gordon and Breach, New York (1995), p. 69.Google Scholar
  20. 20.
    A. R. Bassindale, M. Borbaruah, S. J. Glynn, D. J. Parker, and P. G. Taylor, J. Chem. Soc., Perkin Trans. 2, 2099 (1999).Google Scholar
  21. 21.
    A. R. Bassindale, S. J. Glynn, P. G. Taylor, N. Auner, and B. Herrschaft, J. Organomet. Chem., 619, 132 (2001).CrossRefGoogle Scholar
  22. 22.
    Cambridge Structural Database (CSD), Release 2010.Google Scholar
  23. 23.
    A. O Mozzhukhin, M. Yu. Antipin, Yu. T. Struchkov, A. G. Shipov, E. P. Kramarova, and Yu. I. Baukov, Metalloorg. Khim., 5, 906 (1992).Google Scholar
  24. 24.
    I. D. Kalikhman, A. I. Albanov, O. B. Bannikova, L. I. Belousova, M. G. Voronkov, V. A. Pestunovich, A. G. Shipov, E. P. Kramarova, and Yu. I. Baukov, J. Organomet. Chem., 361, 147 (1989).CrossRefGoogle Scholar
  25. 25.
    V. A. Pestunovich, S. V. Kirpichenko, N. F. Lazareva, A. I. Albanov, and M. G. Voronkov, J. Organomet. Chem., 692, 2160 (2007).CrossRefGoogle Scholar
  26. 26.
    V. A. Pestunovich, Author's Abstract of Chem. Sci. Doct. Diss., Irkutsk (1985).Google Scholar
  27. 27.
    V. V. Negrebetsky, S. N. Tandura, and Yu. I. Baukov, Usp. Khim., 78, 24 (2009).Google Scholar
  28. 28.
    A. A. Korlyukov, S. A. Pogozhikh, Yu. E. Ovchinnikov, K. A. Lyssenko, M. Yu. Antipin, A. G. Shipov, O. A. Zamyshlyaeva, E. P. Kramarova, Vad. V. Negrebetsky, I. P. Yakovlev, and Yu. I. Baukov, J. Organom. Chem., 691, 3962 (2006).CrossRefGoogle Scholar
  29. 29.
    Vad. V. Negrebetsky, A. G. Shipov, E. P. Kramarova, V. V. Negrebetsky, and Yu. I. Baukov, J. Organomet. Chem., 530, 1 (1997).CrossRefGoogle Scholar
  30. 30.
    F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor, J. Chem. Soc., Perkin Trans. 2, S1 (1987).Google Scholar
  31. 31.
    R. R. Holmes and J. A. Deiters, J. Am. Chem. Soc., 99, 3318 (1977).CrossRefGoogle Scholar
  32. 32.
    W. S. Brey, Pulse Methods in 1D and 2D Liquid-Phase NMR, Academic Press, New York (1988), p. 561.Google Scholar
  33. 34.
    N. Izumiya, Bull. Chem. Soc. Japan, 26, 53 (1953).CrossRefGoogle Scholar
  34. 34.
    J. De Ruiter, A. N. Brubaker, M. A. Garner, J. M. Barksdale, and C. A. Mayfield, J. Pharm. Sci., 76, 149 (1987).CrossRefGoogle Scholar
  35. 35.
    R. Korukonda, N. Guan, J. T. Dalton, J. Liu, and I. O. Donkor, J. Med. Chem., 49, 5282 (2006).CrossRefGoogle Scholar
  36. 36.
    J. K. Chang, H. Sievertsson, B. Currie, and K. Folkers, J. Med. Chem., 14, 484 (1971).CrossRefGoogle Scholar
  37. 37.
    G. M. Sheldrick, Acta Crystallogr. A64, 112 (2008).Google Scholar
  38. 38.
    A. A. Potekhin, Handbook of Properties of Organic Compounds [in Russian], Khimiya, Leningrad (1984), p. 298.Google Scholar
  39. 39.
    R. R. Hill, S. A. Moore, and D. R. Roberts, Photochem. Photobiol., 81, 1439 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • A. A. Nikolin
    • 1
  • D. E. Arkhipov
    • 2
  • A. G. Shipov
    • 1
  • E. P. Kramarova
    • 1
  • N. A. Koval˙ˈchuk
    • 2
  • A. A. Korlyukov
    • 2
    Email author
  • V. V. Negrebetsky
    • 1
  • Yu. I. Baukov
    • 1
    Email author
  • A. R. Bassindale
    • 3
  • P. G. Taylor
    • 3
  • A. Bowden
    • 3
  • S. Yu. Bylikin
    • 1
    • 3
  1. 1.Russian State Medical UniversityMoscowRussia
  2. 2.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  3. 3.Open UniversityGreat BritainUK

Personalised recommendations