Chemistry of Heterocyclic Compounds

, Volume 47, Issue 12, pp 1551–1560 | Cite as

Heterocyclic carbene complexes of nickel, palladium, and copper(I) as effective catalysts for the reduction of ketones*

  • N. I. KorotkikhEmail author
  • V. Sh. Saberov
  • A. V. Kiselev
  • N. V. Glinyanaya
  • K. A. Marichev
  • T. M. Pekhtereva
  • G. V. Dudarenko
  • N. A. Bumagin
  • O. P. Shvaika

Carbene complexes of nickel, palladium, and copper(I) effectively catalyze the reduction of aromatic ketones under the influence of 2-propanol in the presence of potassium hydroxide. Bis(1,3-dimethylbenzimidazol-2-ylidene)copper(I) iodide and the polymeric complex of crown-biscarbene with copper(I) iodide show the highest catalytic efficiency.


heterocyclic carbene complexes of copper(I) nickel and palladium catalysis reduction of ketones 


  1. 1.
    W. A. Herrmann, Angew. Chem, Int. Ed., 41, 1290 (2002).CrossRefGoogle Scholar
  2. 2.
    J. W. Herndon, Coord. Chem. Rev., 206/207, 237 (2000).CrossRefGoogle Scholar
  3. 3.
    S. Nolan (editor), N-Heterocyclic Carbenes in Synthesis. Wiley-VCH, Weinheim, 2006, p.304.Google Scholar
  4. 4.
    D. Enders, O. Niemeier, and A. Henseler, Chem. Rev., 107, 5606 (2007).CrossRefGoogle Scholar
  5. 5.
    M. Albrecht, R. H. Crabtree, J. Mata, and E. Peris, Chem. Commun., 32 (2002).Google Scholar
  6. 6.
    H. Seo, B. Y. Kim, J. H. Lee, H.-J. Park, S. U. Son, and Y. K. Chung, Organometallics, 22, 4783 (2003).CrossRefGoogle Scholar
  7. 7.
    M. Poyatos, E. Mas-Marza, J. A. Mata, M. Sanau, and E, Peris, Eur. J. Inorg. Chem., 1215 (2003). Google Scholar
  8. 8.
    J. R. Miecznikowski and R. H. Crabtree, Organometallics, 23, 629 (2004).CrossRefGoogle Scholar
  9. 9.
    F. E. Hahn, C. Holtgrewe, T. Pape, M. Martin, E. Sola, and L. A. Oro, Organometallics, 24, 2203 (2005).CrossRefGoogle Scholar
  10. 10.
    E. Mas-Marza, M. Sanau, and E. Peris, Inorg. Chem., 44, 9961 (2005).CrossRefGoogle Scholar
  11. 11.
    C.-Y. Wang, C.-F. Fu, Y.-H. Liu, S. M. Peng, and S. T. Liu, Inorg. Chem., 46, 5779 (2007).CrossRefGoogle Scholar
  12. 12.
    H. Turkmen, T. Pape, F. E. Hahn, and B. Cetinkaya, Organometallics, 27, 571 (2008).CrossRefGoogle Scholar
  13. 13.
    B. Milani, C. Crotti, and E. Farnetti, Dalton Trans., 4659 (2008).Google Scholar
  14. 14.
    I. Kownacki, M. Kubicki, K. Szubert, and B. Marciniec, J. Organomet. Chem., 693, 321 (2008).CrossRefGoogle Scholar
  15. 15.
    Y.-H. Chang, C.-F. Fu, Y.-H. Liu, S.-M. Peng, J.-T. Chen, and S.-T. Liu, Dalton Trans.,861 (2009).Google Scholar
  16. 16.
    Y. Cheng, H.-J. Xu, J.-F. Sun, Y.-Z. Li, X.-T. Chen, and Z.-L. Xue, Dalton Trans., 7132 (2009).Google Scholar
  17. 17.
    A. Sinha, S. M. W. Rahaman, M. Sarkar, B. Saha, P. Daw, and J. K. Bera, Inorg. Chem, (Washington, D.C., U.S.), 48, 11114 (2009).Google Scholar
  18. 18.
    J.-F. Sun, F. Chen, B. A. Dougan, H.-J. Xu, Y. Cheng, Y.-Z. Li, X.-T. Chen, and Z. I. Xue, J. Organomet. Chem., 694, 2096 (2009).CrossRefGoogle Scholar
  19. 19.
    D. Gnanamgari, E. L. O. Sauer, N. D. Schley, C. Butler, C. D. Incarvito, and R. H. Crabtree, Organometallics, 28, 321 (2009).CrossRefGoogle Scholar
  20. 20.
    Y. Cheng, J.-F. Sun, H.-L. Yang, H.-J. Xu, Y.-Z. Li, X.-T. Chen, Z.-L. Xue, Organometallics, 28, 819 (2009).CrossRefGoogle Scholar
  21. 21.
    W. N. O. Wylie, A. J. Lough, and R. H. Morris, Organometallics, 28, 6755 (2009).CrossRefGoogle Scholar
  22. 22.
    N. Ding, and T. S. A. Hor, Dalton Trans., 10179 (2010).Google Scholar
  23. 23.
    Y. Cheng, X.-Y. Liu, H.-J. Xu, Y.-Z. Li, X.-T. Chen, and Z.-L. Xue, Inorg. Chim. Acta, 363, 430 (2010).CrossRefGoogle Scholar
  24. 24.
    S. Gulcemal, J.-C. Daran, and B. Cetinkaya, Inorg. Chim. Acta, 365, 264 (2011).CrossRefGoogle Scholar
  25. 25.
    A. V. Kiselev. Dis. Cand. Khim. Nauk, Donetsk (2008).Google Scholar
  26. 26.
    M. I. Korotkikh, A. V. Kiselyov, T. M. Pekhtereva, O. P. Shvaǐka, A. G. Kayli, and J. N. Johns, Dop. NAN Ukraine, 150 (2005).Google Scholar
  27. 27.
    N. I Korotkikh, O. P. Shvaika, G. F. Rayenko, A. V. Kiselyov, A. V. Knishevitsky, A. N. Cowley, J. N. Jones, and C. L. B Macdonald, ARKIVOC, 8, 10 (2005).Google Scholar
  28. 28.
    A. J. Boydston, J. D. Rice, M. D. Sanderson, O. L. Dykhno, and C. W. Bielawski, Organometallics, 25, 6087 (2006).CrossRefGoogle Scholar
  29. 29.
    N. I. Korotklikh, N. V. Glinyanaya, A. H. Cowley, J. A. Moore, A.V. Knishevitsky, T. M. Pekhtereva, and O. P. Shvaika, ARKIVOC, 16, 156 (2007) Google Scholar
  30. 30.
    M. I. Korotkikh, K. O. Marichev, A. V. Kiselyov, and O. P. Shvaika, Ukr. Biorg. Acta, 6, 22 (2008).Google Scholar
  31. 31.
    V. Jurkauskas, J. P. Sadighi, and J. Buchwald, Org. Lett., 5, 2417 (2003).CrossRefGoogle Scholar
  32. 32.
    L. R. Snyder and J. J. Kirkland, Introduction to Modern Liquid Chromatography. 2nd Ed., Wiley-Interscience, New York, 1979.Google Scholar
  33. 33.
    T. Xie, J. Penelle and M. Verraver, Polymer, 43, 3973 (2002).CrossRefGoogle Scholar
  34. 34.
    O. B. Rudakov, I. A. Vostrov, S. V. Fedorov, A. A. Filippov, V. F. Semenev, and A. A. Pridantseva, Hand Book of Chromatography. Methods of Liquid Chromatography [in Russian], Vodolei, Voronezh (2004).Google Scholar
  35. 35.
    A. Khenshen, X.-P. Kupe, F. Lotshpaik, and V. Velter, High Performance Liquid Chromatography in Biochemistry [Russian translation], Mir, Moscow (1988).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • N. I. Korotkikh
    • 1
    Email author
  • V. Sh. Saberov
    • 1
  • A. V. Kiselev
    • 1
  • N. V. Glinyanaya
    • 1
  • K. A. Marichev
    • 1
  • T. M. Pekhtereva
    • 1
  • G. V. Dudarenko
    • 2
  • N. A. Bumagin
    • 3
  • O. P. Shvaika
    • 1
  1. 1.L. M. Litvinenko Institute of Physical Organic and Coal ChemistryThe National Academy of Sciences of UkraineDonetskUkraine
  2. 2.Institute of Macromolecular ChemistryThe National Academy of Sciences of UkraineKyivUkraine
  3. 3.M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations