Advertisement

Chemistry of Heterocyclic Compounds

, Volume 47, Issue 12, pp 1539–1543 | Cite as

Synthesis and cytotoxicity of complex compounds of tin, vanadium, and molybdenum with quinolinethiol and its methyl and methoxy derivatives

  • D. Zaruma
  • E. Lukevics
  • L. IgnatovichEmail author
  • I. Shestakova
  • I. Domracheva
  • V. Bridane
  • E. Yashchenko
  • J. Ashaks
Article

A series of 8-quinolinethiolates, and 3-methyl-, 4-methyl-, 5-methyl-, 6-methyl-, 7-methyl-, and 6-methoxy-8-quinolinethiolates of tin(II), vanadium(IV), and molybdenum(VI) has been synthesized. Their cytotoxicity on HT-1080 tumor cells (human fibrosarcoma) and MG-22A (mouse hepatoma) cells has been studied. It was established that all of the investigated complexes of 8-quinolinethiol and majority of the complexes of 8-quinolinethiol derivatives possessed very high cytotoxicity towards both cell lines. Their toxicity in relation to mouse embryo fibroblasts NIH 3T3 depended on the position of the substituent in the quinoline ring. Complexes of tin and vanadium with 4-methyl-, 5-methyl-, and 6-methoxy-8-quinolinethiol derivatives were less toxic. 4-Methyl-, 5-methyl-, and 6-methoxy-8-quinolinethiolates of vanadium demonstrated the highest selectivity of cytotoxic action.

Keywords

methyl(methoxy)-8-quinolinethiolates of vanadium molybdenum and tin cytotoxicity synthesis toxicity 

References

  1. 1.
    J. Ashaks, Yu. Bankovsky, D. Zaruma, I. Shestakova, I. Domracheva, A. Nesterova, and E. Lukevics, Khim. Geterotsikl. Soedin., 905 (2004). [Chem. Heterocycl. Comp., 40, 776 (2004)].Google Scholar
  2. 2.
    E. Lukevics, I. Shestakova, I. Domracheva, A. Nesterova, D. Zaruma, and J. Ashaks, Khim. Geterotsikl. Soedin., 870 (2006). [Chem. Heterocycl. Comp., 42, 761 (2006)].Google Scholar
  3. 3.
    T. Kiss and T. Jakusch, in: M. Gielen and E. R. T. Tiekink (editors), Metallotherapeutic Drugs and Metal-Based Diagnostic Agents, J. Wiley and Sons, Chichester (2005), p. 143.CrossRefGoogle Scholar
  4. 4.
    J. B. Waern and M. M. Harding, J. Organomet. Chem., 689, 4655 (2004).CrossRefGoogle Scholar
  5. 5.
    H. Thomadaki, A. Karaliota, C. Litos, and A. Scorilas, J. Med. Chem., 50, 1316 (2007).CrossRefGoogle Scholar
  6. 6.
    V. Vrdoljak, L. Dilovic, M. Rubcic, S. K. Pavelic, M. Kralj, D. Matkovic-Calogovic, I. Piantanida, P. Novak, A. Rozman, and M. Cindric, Eur. J. Med Chem., 45, 38 (2010).CrossRefGoogle Scholar
  7. 7.
    M. Gielen and E. Tiekink, in: M. Gielen and E. Tiekink (editors), Metallotherapeutic Drugs and Metal-Based Diagnostic Agents, J. Wiley and Sons, Chichester (2005), p. 421.CrossRefGoogle Scholar
  8. 8.
    M. S. Sarma, S. Mazumder, D. Ghosh, A. Roy, A. Duthie, and E. R. T. Tiekink, Appl. Organomet. Chem., 21, 890 (2007).CrossRefGoogle Scholar
  9. 9.
    E. Lukevics, I. Shestakova, I. Domracheva, A. Nesterova, J. Ashaks, and D. Zaruma, Khim. Geterotsikl. Soedin., 59 (2006). [Chem. Heterocycl. Comp., 42, 53 (2006)].Google Scholar
  10. 10.
    E. Lukevics, D. Zaruma, J. Ashaks, I. Shestakova, I. Domracheva, V. Bridane, and E. Yashchenko, Khim. Geterotsikl. Soedin., 230 (2009). [Chem. Heterocycl. Comp., 45, 182 (2009)].Google Scholar
  11. 11.
    E. Lukevics, D. Zaruma, J. Ashaks, I. Shestakova, I. Domracheva, A. Gulbe, and V. Bridane, Khim. Geterotsikl. Soedin., 711 (2008). [Chem. Heterocycl. Comp., 44, 559 (2008)].Google Scholar
  12. 12.
    E. Lukevics, I. Shestakova, I. Domracheva, A. Nesterova, E. Yashchenko, D. Zaruma, and J. Ashaks, Khim. Geterotsikl. Soedin., 750 (2007). [Chem. Heterocycl. Comp., 43, 629 (2007)].Google Scholar
  13. 13.
    Guidance Document on Using in vitro Data to Estimate in vivo Starting Doses for Acute Toxicity, National Institute of Health, US Department of Health and Human Services (2001), p. 12.Google Scholar
  14. 14.
    Yu. A. Bankovsky, A. F. Ievinsh, and E. A. Luksha, Zh. Obshch. Khim., 28, 2273 (1958).Google Scholar
  15. 15.
    A. Sturis, A. Sturis, V. Purmal, Zh. Dergunova, and Yu. Bankovsky, Izv. Akad. Nauk LatvSSR, Ser, Khim., 718 (1981).Google Scholar
  16. 16.
    A. P. Stūris, J. Bankovsky, E. Lukša, and A. Ieviņš, Izv. Akad. Nauk LatvSSR, Ser. Khim., 476 (1966).Google Scholar
  17. 17.
    A. Stūris, V. Purmale, T Dičko, and Yu. Bankovsky, Izv. Akad. Nauk LatvSSR, Ser. Khim., 282 (1979).Google Scholar
  18. 18.
    A. P. Sturis, Yu. A. Bankovsky, in: Khim. Geterotsikl. Soedin., Nitrogen-Containing Heterocycles [in Russian], Zinatne, Riga (1967), p. 269.Google Scholar
  19. 19.
    A. Stūris, Yu. Bankovsky, and M. Āboliņa, Izv. Akad. Nauk LatvSSR, Ser. Khim., 334 (1967).Google Scholar
  20. 20.
    P. Brusilovsky, Izv. Akad. Nauk LatvSSR, Ser. Khim., 454 (1970).Google Scholar
  21. 21.
    E. Lukevics, L. Ignatovich, I. Sleiksha, V. Muravenko, I. Shestakova, S. Belyakov, and J. Popelis, Appl. Organometal. Chem., 20, 454 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • D. Zaruma
    • 2
  • E. Lukevics
    • 1
  • L. Ignatovich
    • 1
    Email author
  • I. Shestakova
    • 1
  • I. Domracheva
    • 1
  • V. Bridane
    • 1
  • E. Yashchenko
    • 1
  • J. Ashaks
    • 2
  1. 1.Latvian Institute of Organic SynthesisRigaLatvia
  2. 2.Institute of Inorganic ChemistryRiga Technical UniversitySalaspilsLatvia

Personalised recommendations