Advertisement

Chemistry of Heterocyclic Compounds

, Volume 47, Issue 12, pp 1516–1526 | Cite as

Organocopper-mediated two-component S N2′-substitution cascade towards N-fused heterocycles

  • D. Chernyak
  • V. GevorgyanEmail author
Article

Organocuprates efficiently undergo reaction with heterocyclic propargyl mesylates at low temperature to produce N-fused heterocycles. The copper reagent plays a “double duty” in this cascade transformation, which proceeds through an S N2′-substitution followed by a consequent cycloisomerization step.

Keywords

allenes indolizines propargyl mesylates cycloisomerization synthetic methods 

References

  1. 1.
    A. Fürstner and P. W. Davies, Angew. Chem., Int. Ed., 46, 3410 (2007).CrossRefGoogle Scholar
  2. 2.
    F. Alonso, I. P. Beletskaya, and M. Yus, Chem. Rev., 104, 3079 (2004).CrossRefGoogle Scholar
  3. 3.
    I. Nakamura and Y. Yamamoto, Chem. Rev., 104, 2127 (2004).CrossRefGoogle Scholar
  4. 4.
    A. V. Kel’in, A. W. Sromek, and V. Gevorgyan, J. Am. Chem. Soc., 123, 2074 (2001).CrossRefGoogle Scholar
  5. 5.
    J. T. Kim, J. Butt, and V. Gevorgyan, J. Org. Chem., 69, 5638 (2004).CrossRefGoogle Scholar
  6. 6.
    J. T. Kim and V. Gevorgyan, J. Org. Chem., 70, 2054 (2005).CrossRefGoogle Scholar
  7. 7.
    T. Schwier, A. W. Sromek, D. M. L. Yap, D. Chernyak, and V. Gevorgyan, J. Am. Chem. Soc., 129, 9868 (2007).CrossRefGoogle Scholar
  8. 8.
    I. V. Seregin and V. Gevorgyan, J. Am. Chem. Soc., 128, 12050 (2006).CrossRefGoogle Scholar
  9. 9.
    I. V. Seregin, A. W. Schammel, and V. Gevorgyan, Org. Lett., 9, 3433 (2007).CrossRefGoogle Scholar
  10. 10.
    C. R. Smith, E. M. Bunnelle, A. J. Rhodes, and R. Sarpong, Org. Lett., 9, 1169 (2007).CrossRefGoogle Scholar
  11. 11.
    A. R. Hardin and R. Sarpong, Org. Lett., 9, 4547 (2007).CrossRefGoogle Scholar
  12. 12.
    B. Yan, Y. Zhou, H. Zhang, J. Chen, and Y. Liu, J. Org. Chem., 72, 7783 (2007).CrossRefGoogle Scholar
  13. 13.
    I. Kim, J. Choi, H. K.Won, and G. H. Lee, Tetrahedron Lett., 48, 6863 (2007).CrossRefGoogle Scholar
  14. 14.
    D. Chernyak, S. B. Gadamsetty, and V. Gevorgyan, Org. Lett., 10, 2307 (2008).CrossRefGoogle Scholar
  15. 15.
    N. Krause, and S. K. Hashmi (editors), Modern Allene Chemistry, Wiley-VCH, Weinheim, 2004.Google Scholar
  16. 16.
    N. Krause and A. Hoffmann-Roeder, Tetrahedron, 60, 11671 (2004).CrossRefGoogle Scholar
  17. 17.
    A. Hoffmann-Roeder and N. Krause, Angew. Chem., Int. Ed., 41, 2933 (2002).CrossRefGoogle Scholar
  18. 18.
    A. Saito, A .Kanno, and Y. Hanzawa, Angew. Chem., Int. Ed., 46, 3931 (2007).CrossRefGoogle Scholar
  19. 19.
    P. Ghosh, S. D. Lotesta, and L. J. Williams, J. Am. Chem. Soc., 129, 2438 (2007).CrossRefGoogle Scholar
  20. 20.
    R. K. Dieter, N. Chen, and V. K. Gore, J. Org. Chem., 71, 8755 (2006).CrossRefGoogle Scholar
  21. 21.
    E. S. Sherman, S. R. Chemler, T. B. Tan, and O. Gerlits, Org. Lett., 6, 1573 (2004).CrossRefGoogle Scholar
  22. 22.
    E. S. Sherman, P. H. Fuller, D. Kasi, and S. R. Chemler, J. Org. Chem., 72, 3896 (2007).CrossRefGoogle Scholar
  23. 23.
    B. H. Lipshutz, in: M. Schlosser (editor), Organometallics in Synthesis, A Manual, J. Wiley & Sons, New York (1994), p. 283.Google Scholar
  24. 24.
    N. Krause (editor), Modern Organocopper Chemistry, Wiley-VCH, Weinheim (2002).Google Scholar
  25. 25.
    R. J. K. Taylor and G. Casy, in: R. J. K. Taylor (editor), Organocopper ReagentsA Practical Approach, Oxford University Press, New York (1995), p. 40.Google Scholar
  26. 26.
    A. Jansen and N. Krause, Inorg. Chem. Acta, 359, 1761 (2006).CrossRefGoogle Scholar
  27. 27.
    A. Jansen and N. Krause, Synthesis, 1987 (2002).Google Scholar
  28. 28.
    I. V. Seregin and V. Gevorgyan, Chem. Soc. Rev., 36, 1173 (2007).CrossRefGoogle Scholar
  29. 29.
    C.-H. Park, V. Ryabova, I. V. Seregin, A. W. Sromek, and V. Gevorgyan, Org. Lett., 6, 1159 (2004).CrossRefGoogle Scholar
  30. 30.
    I. V. Seregin, V. Ryabova, and V. Gevorgyan, J. Am. Chem. Soc., 129, 7742 (2007).CrossRefGoogle Scholar
  31. 31.
    A. W. Sromek, M. Rubina, and V. Gevorgyan, J. Am. Chem. Soc., 127, 10500 (2005).CrossRefGoogle Scholar
  32. 32.
    A. S. Dudnik, A. W. Sromek, M. Rubina, J. T. Kim, A. V. Kel’in, and V. Gevorgyan, J. Am. Chem. Soc., 130, 1440 (2008).CrossRefGoogle Scholar
  33. 33.
    C. Bailly, Curr. Med. Chem.: Anti-Cancer Agents, 4, 363 (2004).CrossRefGoogle Scholar
  34. 34.
    D. Pla, A. Francesch, P. Calvo, C. Cuevas, R. Aligue, F. Albericio, and M. Alvarez, Bioconjugate Chem., 20, 1100 (2009).CrossRefGoogle Scholar
  35. 35.
    C. Ballot, J. Kluza, A. Martoriati, U. Nyman, P. Formstecher, B. Joseph, C. Bailly, and P. Marchetti, Mol. Cancer Ther., 8, 3307 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.University of Illinois at ChicagoChicagoUSA

Personalised recommendations