Chemistry of Heterocyclic Compounds

, Volume 47, Issue 11, pp 1395–1404 | Cite as

Synthesis and properties of pyrazole carbaldehyde bis(2-hydroxyethyl)-dithioacetal hydrochlorides*

  • L. K. PapernayaEmail author
  • A. A. Shatrova
  • A. I. Albanov
  • E. V. Rudyakova
  • G. G. Levkovskaya

A simple method has been developed for the synthesis of water-soluble pyrazole derivatives, namely 4-[bis(2-hydroxyethylsulfanyl)methyl]pyrazoles hydrochlorides, by the reaction of a series of pyrazole carbaldehydes with 2-mercaptoethanol in the presence of trimethylchlorosilane. When treated with aqueous ammonia solution the pyrazole-4-carbaldehydes bis(2-hydroxyethyl)dithioacetal hydro-chlorides are converted to the 4-[bis(2-hydroxyethylsulfanyl)methyl]pyrazole free bases.


bis(2-hydroxyethyl)dithioacetals 2-mercaptoethanol 1,3-oxathiolane pyrazole carbaldehydes trimethylchlorosilane acetalization 


This work was carried out with the financial support of the Russian Foundation for Fundamental Investigations (grant 10-03-00256a).


  1. 1.
    T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2nd Edition, Wiley, New York (1991).Google Scholar
  2. 2.
    S. Oh, I. H. Jeong, C. M. Ahn, V. S. Shin, and S. Lee, Bioorg. Med. Chem., 12, 3783 (2004).CrossRefGoogle Scholar
  3. 3.
    K. Benda, W. Regenhardt, E. Shaumann, and G. Adiwidjaja, Eur. J. Org. Chem., 1016 (2009).Google Scholar
  4. 4.
    K. C. Golden, B. T. Gregg, and J. F. Quinn, Tetrahedron Lett., 51, 4010 (2010).CrossRefGoogle Scholar
  5. 5.
    T. Mori, Y. Sawada, and A. Oku, J. Org. Chem., 65, 3620 (2000).CrossRefGoogle Scholar
  6. 6.
    M. Ioannou, M. J. Porter, and F. Saez, Chem. Commun., 346 (2002).Google Scholar
  7. 7.
    K. Krohn and S. Cludius-Brandt, Synthesis, 1344 (2010).Google Scholar
  8. 8.
    K. Utimoto, A. Nakamura, and S. Matsubara, J. Am. Chem. Soc., 112, 8189 (1990).CrossRefGoogle Scholar
  9. 9.
    J. E. Lynch and E. L. Eliel, J. Am. Chem. Soc., 106, 2943 (1984).CrossRefGoogle Scholar
  10. 10.
    E. L. Eliel and S. Morris-Natschke, J. Am. Chem. Soc., 106, 2937 (1984).CrossRefGoogle Scholar
  11. 11.
    S. Dei, P. Angeli, C. Bellucci, M. Buccioni, F. Gualtieri, G. Marrucci, D. Manetti, R. Matucci, M. N. Romanelli, S. Scapecchi, and E. Teodori, Biochem. Pharmacol., 69, 1637 (2005).CrossRefGoogle Scholar
  12. 12.
    P. C. Bulman Page, M. B. van Niel, and J. C. Prodger, Tetrahedron, 45, 7643 (1989).CrossRefGoogle Scholar
  13. 13.
    A. T. Khan, E. Mondal, S. Ghosh, and S. Islam, Eur. J. Org. Chem., 2002 (2004).Google Scholar
  14. 14.
    S. Ter-Sarkisyan, Izv. Akad. Nauk SSSR, Ser. Khim., 1988 (1960).Google Scholar
  15. 15.
    C. Macleod, G. J. McKiernan, E. J. Guthrie, L. J. Farrugia, D. W. Hamprecht, J. Macritchie, and R. C. Hartley, J. Org. Chem., 68, 387 (2003).CrossRefGoogle Scholar
  16. 16.
    B. Karimi, H. Seradj, and J. Maleki, Tetrahedron, 58, 4513 (2002).CrossRefGoogle Scholar
  17. 17.
    K. Krohn and S. Cludius-Brandt, Synthesis, 2369 (2008).Google Scholar
  18. 18.
    Y. Wang, G. Inguaggiato, M. Jasamai, M. Shah, D. Hughes, M. Slater, and C. Simons, Bioorg. Med. Chem., 7, 481 (1999).CrossRefGoogle Scholar
  19. 19.
    A. Martinez, A. I. Esteban, A. Herrero, C. Ochoa, G. Andrei, R. Snoeck, J. Balzarini, and E. De Clercq, Bioorg. Med. Chem., 7, 1617 (1999).CrossRefGoogle Scholar
  20. 20.
    M. Camplo, A. S. Charvet-Faury, C. Borel, F. Turin, O. Hantz, V. Trabaud, C. Niddam, N. Mourier, J. C. Graciet, J. C. Chermann, and J. L. Kraus, Eur. J. Med. Chem., 31, 539 (1996).CrossRefGoogle Scholar
  21. 21.
    J. W. Ralls, R. M. Dodson, and B. Riegel, J. Am. Chem. Soc., 71, 3320 (1949).CrossRefGoogle Scholar
  22. 22.
    C. Djerassi and M. Gorman, J. Am. Chem. Soc., 75, 3704 (1953).CrossRefGoogle Scholar
  23. 23.
    G. E. Wilson Jr., M. G. Huang, and W. W. Schloman Jr., J. Org. Chem., 33, 2133 (1968).CrossRefGoogle Scholar
  24. 24.
    V. Kumar and S. Dev, Tetrahedron Lett., 24, 1289 (1983).CrossRefGoogle Scholar
  25. 25.
    J. S. Yadav, B. V. S. Reddy, and S. K. Pandey, Synth. Commun., 32, 715 (2002).CrossRefGoogle Scholar
  26. 26.
    V. K. Yadav and A. G. Fallis, Tetrahedron Lett., 29, 897 (1988).CrossRefGoogle Scholar
  27. 27.
    E. Mondal, P. R. Sahu, G. Bose, and A. Khan, Tetrahedron Lett., 43, 2843 (2002).CrossRefGoogle Scholar
  28. 28.
    B. Bogdan and Z. Kortylewicz, Synthesis, 831 (1982).Google Scholar
  29. 29.
    K. Manabe, S. Iimura, X-M. Sun, and S. Kobayashi, J. Am. Chem. Soc., 124, 11971 (2002).CrossRefGoogle Scholar
  30. 30.
    A. Kumar, M. S. Rao, and V. K. Rao, Aust. J. Chem., 63, 135 (2010).CrossRefGoogle Scholar
  31. 31.
    D. Azarifar and A. Forghaniha, J. Chin. Chem. Soc. (Taipei, Taiwan), 53, 1189 (2006).Google Scholar
  32. 32.
    P. Elguero, N. Goya, N. Jagerovic, and A. M. S. Silva, in: A. Attanasi and D. Spinelli (editors), Targets in Heterocyclic Systems. Chemistry and Properties, Vol. 6, Italian Chemical Society, Rome (2002), p. 53.Google Scholar
  33. 33.
    A. F. Grapov, Russ. Chem. Rev., 68, 697 (1999).CrossRefGoogle Scholar
  34. 34.
    E. S. Domina, L. A. Es'kova, E. V. Petrova, N. N. Chipanina, V. K. Voronov, A. V. Afonin, and G. G. Skvortsova, Zh. Neorg. Khim., 32, 1523 (1987).Google Scholar
  35. 35.
    L. K. Papernaya, A. A. Shatrova, A. I. Albanov, E. V. Rudyakova, and G. G. Levkovskaya, Zh. Org. Khim., 47, 467 (2011).Google Scholar
  36. 36.
    L. K. Papernaya, A. A. Shatrova, A. I. Albanov, and G. G. Levkovskaya, Zh. Org. Khim., 47, 305 (2011).Google Scholar
  37. 37.
    Z.-Y. Peng, F.-F. Ma, L.-F. Zhu, X.-M. Xie, and Z. Zhang, J. Org. Chem., 74, 6855 (2009).CrossRefGoogle Scholar
  38. 38.
    L. P. Turchaninova, N. A. Korchevin, A. T. Shipov, E. N. Deryagina, Yu. I. Baukov, and M. G. Voronkov, Zh. Obshch. Khim., 59, 722 (1989).Google Scholar
  39. 39.
    M. Kamiya, Bull. Chem. Soc. Jpn., 43, 3344 (1970).CrossRefGoogle Scholar
  40. 40.
    I. A. Zyryanova, L. V. Baikalova, O. A. Tarasova, A. V. Afonin, V. A. Kukhareva, M. A. Maksimova, and B. A. Trofimov, Zh. Obshch. Khim., 75, 1353 (2005).Google Scholar
  41. 41.
    R. J. Pugmire and D. M. Grant, J. Am. Chem. Soc., 90, 4232 (1968).CrossRefGoogle Scholar
  42. 42.
    I. I. Schuster and J. D. Roberts, J. Org. Chem., 44, 3864 (1979).CrossRefGoogle Scholar
  43. 43.
    A. Pawer and A. A. Patil, Indian J. Chem. Sect. B, 33, 156 (1994).Google Scholar
  44. 44.
    A. F. Pozharskii, V. A. Anisimova, and E. B. Tsupak, Practical Work on Heterocyclic Chemistry [in Russian], Rostov on Don Publishing House (1988), p. 22.Google Scholar
  45. 45.
    E. V. Rudyakova, V. A. Savosik, L. K. Papernaya, A. I. Albanov, I. T. Evstaf'eva, and G. G. Levkovskaya, Zh. Org. Khim., 45, 1053 (2009).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • L. K. Papernaya
    • 1
    Email author
  • A. A. Shatrova
    • 1
  • A. I. Albanov
    • 1
  • E. V. Rudyakova
    • 1
  • G. G. Levkovskaya
    • 1
  1. 1.A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of SciencesIrkutskRussia

Personalised recommendations