Advertisement

Chemistry of Heterocyclic Compounds

, Volume 47, Issue 11, pp 1372–1377 | Cite as

Polarographic investigation of the metronidazole complex with polyvinylpyrrolidone*

  • T. I. VakulˈskayaEmail author
  • L. I. Larina
  • V. A. Lopyrev
Article

Polarographic behavior of the metronidazole complex with polyvinylpyrrolidone in Britton-Robinson buffer solutions have been studied. This complex possesses prolonged antimicrobial action. Complexation with polyvinylpyrrolidone was shown to alter the mechanism of metronidazole reduction and increases its solubility in water. The temperature dependence of the limiting currents indicates the formation of additional hydrogen bonds in the complex, which restricts diffusion of the depolarizer to the cathode.

Keywords

1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole metronidazole polyvinylpyrrolidone Britton-Robinson buffer media complexes electrochemical reduction hydrogen bond polarography 

Notes

The authors thank L. G. Rozinova for supplying samples for study and assistance in preparing the experiments.

References

  1. 1.
    V. N. Ivchenko and V. M. Mel'nik, Klinicheskaya Khirurgiya, 45 1983).Google Scholar
  2. 2.
    M. D. Mashkovskii, Drugs [in Russian], vol. 2, Novaya Volna, Moscow (2003), p. 345.Google Scholar
  3. 3.
    C. D. Freeman, N. E. Klutman, and K. C. Lamp, Drugs, 54, 679 (1997).CrossRefGoogle Scholar
  4. 4.
    W. Raether and H. Hänel, Parasilol. Res., 90, S19 (2003).Google Scholar
  5. 5.
    H. Werner, D. H. Wittmann, and J. F. Riemann, Fortschritte der Antimikrobiellen und Antineoplatischen Chemotherapie (FAC), vols. 2–4, Futuramed Verlag, Munich, Germany (1983).Google Scholar
  6. 6.
    L. I. Larina and V. A. Lopyrev, Nitroazoles: Synthesis, Structure and Applications, Springer, New York (2009), p. 407.CrossRefGoogle Scholar
  7. 7.
    A. Bendesky, D. Menéndez, and P. Ostrovsky-Wegman, Mutat. Res., Rev. Mutat. Res., 511, 133 (2002).CrossRefGoogle Scholar
  8. 8.
    Y. W. Chien and S. S. Mizuba, J. Med. Chem., 21, 374 (1978).CrossRefGoogle Scholar
  9. 9.
    D. Barety, B. Resibois, and G. Vergoten, J. Electroanal. Chem., 162, 335 (1984).CrossRefGoogle Scholar
  10. 10.
    J. B. Rodriguez and E. G. Gros, Curr. Med. Chem., 2, 723 (1995).Google Scholar
  11. 11.
    A. M. Rauth, Int. J. Radiat. Oncol. Biol. Phys., 10, 1293 (1984).CrossRefGoogle Scholar
  12. 12.
    C. Viode, C. De Albuquerque, G. Chauviere, C. Houee-Levin, and J. Perie, New J. Chem., 21, 1331 (1997).Google Scholar
  13. 13.
    P. Wardman and E. D. Clarke, NATO Adv. Study Inst. Ser., Ser. C, 535 (1978).Google Scholar
  14. 14.
    R. M. Ings, J. A. McFadzean, and W. E. Ormerod, Biochem. Pharmacol., 23, 1421 (1974).CrossRefGoogle Scholar
  15. 15.
    P. J. Declerck and C. J. De Ranter, Analusis, 15, 148 (1987).Google Scholar
  16. 16.
    P. J. Declerck and C. J. De Ranter, J. Chem. Soc., Faraday Trans. 1, 83, 257 (1987).CrossRefGoogle Scholar
  17. 17.
    E. D. Clarke and P. Wardman, Int. J. Radiat. Biol., 37, 463 (1980).CrossRefGoogle Scholar
  18. 18.
    L. Sjöberg, T. E. Eriksen, I. Mustea, and L. Revesz, Radiochem. Radioanal. Lett., 29, 19 (1977).Google Scholar
  19. 19.
    P. Wardman and E. D. Clarke, Biochem. Biophys. Res. Commun., 69, 942 (1976).CrossRefGoogle Scholar
  20. 20.
    C. Viodé, N. Bettache, N. Cenas, R. L. Krauth-Siegel, G. Chauvière, N. Bakalara, and J. Périé, Biochem. Pharmacol., 57, 549 (1999).CrossRefGoogle Scholar
  21. 21.
    D. E. Moore, C. F. Chignell, R. H. Sik, and A. G. Motten, Int. J. Radiat. Biol., 50, 885 (1986).CrossRefGoogle Scholar
  22. 22.
    D. Kosanovic, D. Dumanovic, and J. Iovanovic, J. Serb. Chem. Soc., 53, 559 (1988).Google Scholar
  23. 23.
    D. Dumanovic, J. Volke, and V. Vajgand, J.Pharm. Pharmacol., 18, 507 (1966).CrossRefGoogle Scholar
  24. 24.
    P. L. Olive, Br. J. Cancer, 40, 89 (1979).CrossRefGoogle Scholar
  25. 25.
    S. C. Leach, R. D. Weaver, K. Kinoshita, and W. W. Lee, J. Electroanal. Chem., 129, 213 (1981).CrossRefGoogle Scholar
  26. 26.
    M. A. La-Scalea, S. H. P. Serrano, and I. G. R. Gutz, J. Braz. Chem. Soc., 10, 127 (1999).CrossRefGoogle Scholar
  27. 27.
    A. M. O. Brett, S. H. P. Serrano, I. Gutz, and M. A. La-Scalea, Bioelectrochem. Bioenerg., 42, 175 (1997).CrossRefGoogle Scholar
  28. 28.
    R. Chadha, V. K. Kapoor, and A. Kumar, J. Sci. Ind. Res., 65, 459 (2006).Google Scholar
  29. 29.
    V. A. Lopyrev, L. G. Rozinova, N. I. Protsuk, E. G. Grigor'ev, A. S. Kogan, E. E. Kuznetsova, A. V. Astakhova, B. V. Mikhalev, N. V. Tarasov, and A. V. Kamyshanov, RF Pat. 2157384; Byul. Izobr., No. 28, 254 (2000).Google Scholar
  30. 30.
    E E. Kuznetsova, T. I. Mayakova, G. V. Kozlova, E. T. Sharapova, L. G. Rozinova, and V. A. Lopyrev, Klinicheskaya Laboratornaya Diagnostika, No. 9, 24 (1998).Google Scholar
  31. 31.
    E. G. Grigor'ev and A. S. Kogan, Surgery of Serious Suppurative Processes [in Russian], Nauka, Novosibirsk (2000), p. 286.Google Scholar
  32. 32.
    J. P. Stradiņš, in: J. P. Stradiņš and S. G. Mairanovskii, Polarography. Problems and Prospects [in Russian], Zinatne, Riga (1977), p. 21Google Scholar
  33. 33.
    R. W. Schmid and C. N. Reilley, J. Am. Chem. Soc., 80, 2087 (1958).CrossRefGoogle Scholar
  34. 34.
    S. G. Mairanovskii, J. P. Stradiņš, and V. D. Bezuglyi, Polarography in Organic Chemistry [in Russian], Khimiya, Moscow (1975), p. 48.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • T. I. Vakulˈskaya
    • 1
    Email author
  • L. I. Larina
    • 1
  • V. A. Lopyrev
    • 1
  1. 1.A. E. Favorsky Irkutsk Institute of Chemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations