Chemistry of Heterocyclic Compounds

, Volume 47, Issue 11, pp 1353–1366 | Cite as

Intramolecular thermal transformations of N-phthalimidoaziridines: 1,3-dipolar cyclo-addition and rearrangements*

  • M. A. KuznetsovEmail author
  • A. S. Pan’kova
  • V. V. Voronin
  • N. A. Vlasenko

The intramolecular thermal cycloaddition of N-phthalimidoaziridines at multiple bonds of substituents with the intermediate formation of azomethine ylides leads to condensed pyrrole derivatives, in which the five-membered ring is adjacent to a five-, six-, or seven-membered ring. Rearrangements, which sometimes become the predominant reactions, compete with cycloaddition. Thus, aziridines with aryl substituents readily isomerize to give imines with a 1,2-shift of the phthalimide group to one of the carbon atoms. Aziridines with one electron-withdrawing substituent probably do not open to give 1,3-dipoles but rather undergo a Cope-type rearrangement involving the three-membered ring and C = O bond of the second substituent. Even in intramolecular reactions, very low activity is found for the cyano group triple bond and aromatic ring bonds as dipolarophiles.


aziridines azomethine ylides benzoxepinopyrrole chromenoimidazole hexahydro-indenopyrroles 1,3-dipolar cycloaddition rearrangements 


This work was carried out with the financial support of St. Petersburg State University (Grant No.


  1. 1.
    I. Coldham and R. Hufton, Chem. Rev., 105, 2765 (2005).CrossRefGoogle Scholar
  2. 2.
    A. S. Pankova, V. V. Voronin, and M. A. Kuznetsov, Tetrahedron Lett., 50, 5990 (2009).CrossRefGoogle Scholar
  3. 3.
    P. DeShong, D. A. Kell, and D. R. Sidler, J. Org. Chem., 50, 2309 (1985).CrossRefGoogle Scholar
  4. 4.
    B. R. Henke, A. J. Kouklis, and C. H. Heathcock, J. Org. Chem., 57, 7056 (1992).CrossRefGoogle Scholar
  5. 5.
    M. A. Kuznetsov, L. M. Kuznetsova, J. G. Schantl, and K. Wurst, Eur. J. Org. Chem., 1309 (2001).Google Scholar
  6. 6.
    R. S. Atkinson and B. J. Kelly, J. Chem. Soc., Perkin Trans. 1, 1627 (1989).Google Scholar
  7. 7.
    R. S. Atkinson and J. R. Malpass, J. Chem. Soc., Perkin Trans. 1, 2242 (1977).Google Scholar
  8. 8.
    D. J. Anderson, T. L. Gilchrist, D. C. Horwell, and C. W. Rees, J. Chem. Soc. C, 576 (1970).Google Scholar
  9. 9.
    H. Person, A. Foucaud, K. Luanglath, and C. Fayat, J. Org. Chem., 41, 2141 (1976).CrossRefGoogle Scholar
  10. 10.
    M. A. Kuznetsov and V. V. Voronin, Khim. Geterotsikl. Soedin., 219 (2011). [Chem. Heterocycl. Comp., 47, 173 (2011)].Google Scholar
  11. 11.
    E. V. Beletskii and M. A. Kuznetsov, Zh. Org. Khim., 45, 1237 (2009).Google Scholar
  12. 12.
    M. A. Kuznetsov, A. S. Pan'kova, A. V. Ushkov, and S. I. Selivanov, Zh. Org. Khim., 44, 1807 (2008).Google Scholar
  13. 13.
    A. S. Pan'kova, Abstr. Chem. Sci. Cand. Diss., St. Petersburg, Russia (2009).Google Scholar
  14. 14.
    D. Felix, R. K. Müller, U. Horn, R. Joos, J. Schreiber, and A. Eschenmoser, Helv. Chim. Acta, 55, 1276 (1972).CrossRefGoogle Scholar
  15. 15.
    H. D. K. Drew and H. H. Hatt, J. Chem. Soc., 16 (1937).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • M. A. Kuznetsov
    • 1
    Email author
  • A. S. Pan’kova
    • 1
  • V. V. Voronin
    • 1
  • N. A. Vlasenko
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations