Skip to main content
Log in

Theoretical study of the dimerization of rhodanine in various tautomeric forms

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

The density functional theory (DFT) was used to calculate the relative stability of rhodanine dimers and the energy of intermolecular interaction in them. Analysis of the electron density showed hydrogen bonding in the dimers. The energies of individual hydrogen bonds were determined for the symmetrical dimers. The polarizable continuum model was used to calculate the solvation (hydration) energies of the structures studied. The effect of dimerization on the position of infrared absorption bands was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. R. Bryk, B. Gold, A. Venugopal, J. Singh, R. Samy, K. Pupek, H. Cao, C. Popescu, M. Gurney, S. Hotha, J. Cherian, K. Rhee, L. Ly, P. J. Converse, S. Ehrt, O. Vandal, X. Jiang, J. Schneider, G. Lin, and C. Nathan, Cell Host Microbe, 3, 137 (2008).

    Article  CAS  Google Scholar 

  2. M. Sortino, P. Delgado, S. Juárez, J. Quiroga, R. Abonia, B. Insuasty, M. Nogueras, L. Rodero, F. M. Garibotto, R. D. Enriz, and S. A. Zacchino, Bioorg. Med. Chem., 15, 484 (2007).

    Article  CAS  Google Scholar 

  3. M. G. Orchard, J. C. Neuss, C. M. S. Galley, A. Carr, D. W. Porter, P. Smith, D. I. C. Scopes, D. Haydon, R. Vousden, C. R. Stubberfield, K. Young, and M. Page, Bioorg. Med. Chem. Lett., 14, 3975 (2004).

    Article  CAS  Google Scholar 

  4. J. Dolezel, P. Hirsova, V. Opletalova, J. Dohnal, V. Marcela, J. Kunes, and J. Jampilek, Molecules, 14, 4197 (2009).

    Article  CAS  Google Scholar 

  5. R. B. Lesik, B. S. Zimenkovs'kii, and N. Ya. Trots'ko, Ukr. Bioorg. Acta, 1, 29 (2004).

    Google Scholar 

  6. A. J. Russel, I. M. Westwood, M. H. J. Crawford, J. Robinson, A. Kawamura, C. Redfield, N. Laurieri, E. D. Lowe, S. G. Davies, and E. Sim, Bioorg. Med. Chem. 17, 905 (2009).

    Article  Google Scholar 

  7. A. Mishra, M. K. R. Fischer, and P. Bäurle, Angew. Chem. Int. Ed. Eng., 48, 2474 (2009).

    Article  CAS  Google Scholar 

  8. A. C. Fabretti, G. C. Franchini, and G. Peyronel, Transition Met. Chem., 3, 355 (1978).

    Article  CAS  Google Scholar 

  9. A. C. Fabretti and G. Peyronel, Transition Met. Chem., 2, 224 (1977).

    Article  CAS  Google Scholar 

  10. A. C. Fabretti, G. Peyronel, and G. C. Franchini, Transition Met. Chem., 3, 125 (1978).

    Article  CAS  Google Scholar 

  11. A. C. Fabretti and G. Peyronel, Transition Met. Chem., 2, 207 (1977).

    Article  CAS  Google Scholar 

  12. E. Tang, G. Yang, and J. Yin, Spectrochim. Acta, Part A, 59, 651 (2003).

    Article  CAS  Google Scholar 

  13. R. J. Loncharich, J. S. Nissen, and D. B. Boyd, Struct. Chem., 7, 37 (1996).

    Article  CAS  Google Scholar 

  14. D. B. Boyd, J. Mol. Struct.: THEOCHEM, 401, 227 (1997).

    Article  CAS  Google Scholar 

  15. V. Enchev, I. Petkov, and S. Chorbadjiev, Struct. Chem., 5, 225 (1994).

    Article  CAS  Google Scholar 

  16. D. Tahmassebi, J. Mol. Struct.: THEOCHEM, 638, 11 (2003).

    Article  CAS  Google Scholar 

  17. A. G. Al-Sehemi and T. M. El-Gogary, J. Mol. Struct.: THEOCHEM, 907, 66 (2009).

    Article  CAS  Google Scholar 

  18. M. J. S. Dewar and W. Theil, J. Am. Chem. Soc., 99, 4899 (1977).

    Article  CAS  Google Scholar 

  19. J. J. P. Stewart, J. Comput. Chem., 10, 209 (1989).

    Article  CAS  Google Scholar 

  20. A. D. Becke, J. Chem. Phys., 98, 5648 (1993).

    Article  CAS  Google Scholar 

  21. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785 (1988).

    Article  CAS  Google Scholar 

  22. M. M. Francl, W. J. Petro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, and J. A. Pople, J. Chem. Phys., 77, 3654 (1982).

    Article  CAS  Google Scholar 

  23. S. Miertuš, E. Scrocco, and J. Tomasi, Chem. Phys., 55, 117 (1981).

    Article  Google Scholar 

  24. R. W. F. Bader, Atoms in Molecules. A Quantum Theory, Oxford University Press, Oxford (1990).

    Google Scholar 

  25. T. A. Keith, AIMAll (Version 10.07.25), aim.tkgristmill.com (2010).

  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C.Burant, J. M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Menucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuii, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Isida, T. Nakajima, Y. Honda, O. Kitao, H. Nikai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Octerski, P. Y. Avala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzevski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT (2004).

  27. D. Van der Helm, A. E. Lessor, and L. L. Merritt, Acta Crystallogr., 15, 1227 (1962).

    Article  Google Scholar 

  28. E. Barreiro, J. S. Casas, M. D. Couce, A. Sánchez, J. Sordo, J. M. Varela, and E. M. Vázquez-López, Cryst. Growth. Des., 7, 1964 (2007).

    Article  CAS  Google Scholar 

  29. D. Shahwar, M. N. Tahir, M. A. Raza, B. Iqbal, and S. Naz, Acta Crystallogr., E65, o2637 (2009).

    CAS  Google Scholar 

  30. V. Enchev, S. Chorbadjiev, and B. Jordanov, Khim. Geterotsikl. Soedin., 1268 (2002). [Chem. Heterocycl. Comp., 38, 1110 (2002)].

    Google Scholar 

  31. J. Ray, N. Panja, P. K. Nandi, J. J. Martin, and W. E. Jones, Jr., J. Mol. Struct., 874, 121 (2008).

    Article  CAS  Google Scholar 

  32. E. Espinosa, E. Molins, and C. Lecomte, Chem. Phys. Lett., 285, 170 (1998).

    Article  CAS  Google Scholar 

  33. V. I. Yakimenko and R. S. Lebedev, Russ. Phys. Lett., 16, 1162 (1973).

    Google Scholar 

  34. L. J. Bellamy, The Infra-Red Spectra of Complex Molecules, Chapman and Hall, London (1980).

    Google Scholar 

  35. K. A. V'yunov, A. I. Ginak, and G. Sochilin, J. Appl. Spectrosc., 27, 1592 (1977).

    Article  Google Scholar 

  36. N. Playá, A. Macias, J. M. Varela, A. Sánchez, J. S. Casas, and J. Sordo, Polyhedron, 10, 1465 (1991).

    Article  Google Scholar 

  37. A. J. Gordon and R. A. Ford, The Chemist's Companion, Wiley, New York (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Baryshnikov.

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1532-1547, October, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baryshnikov, G.V., Minaev, B.F., Minaeva, V.A. et al. Theoretical study of the dimerization of rhodanine in various tautomeric forms. Chem Heterocycl Comp 47, 1268–1279 (2012). https://doi.org/10.1007/s10593-012-0902-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-012-0902-9

Keywords

Navigation