Advertisement

Chemistry of Heterocyclic Compounds

, Volume 47, Issue 10, pp 1189–1205 | Cite as

Synthesis of β-nitropyrroles based on nitro compounds (review)

  • A. K. Garkushenko
  • G. P. Sagitullina
Article

Published data on the synthesis of substituted β-nitropyrroles based on aliphatic, alicyclic, and heterocyclic compounds are reviewed.

Keywords

2-alkyl(aryl)-2-alkylsulfanylnitroethylenes dinitrobutadiene 1-methylnitropyrimidone nitroacetone nitroenamines nitroisoxazolone nitroketene dithioacetal nitromalondialdehyde nitromethane β-nitropyrroles 3-nitrochromone nitrocyclopropyl ketones trinitropropionaldehyde ethoxynitroethylene 

References

  1. 1.
    G. Fisher and G. Ort, Chemistry of Pyrroles [in Russian], ONTI, Leningrad (1937), Vol. 1.Google Scholar
  2. 2.
    A. Corvin, in: R. Elderfield (editor), Heterocyclic Compounds [Russian translation], Izd. Inostr. Lit., Moscow (1953), Vol. 1, p. 219.Google Scholar
  3. 3.
    A. Gossauer, Die Chemie der Pyrrole, Springer-Verlag, Berlin (1974).Google Scholar
  4. 4.
    R. A. Jones, in: A. R. Katritzky (editor), Advances in Heterocyclic Chemistry, Academic Press, New York (1970), vol. 11, p. 383.Google Scholar
  5. 5.
    A. G. Jackson, in: D. Barton, and W. D. Ollis (editors), General Organic Chemistry [Russian translation], Khimiya, Moscow (1985), Vol. 8, p. 332.Google Scholar
  6. 6.
    R. J. Sundberg, in: A. R. Katritzky and C. W. Rees (editors), Comprehensive Heterocyclic Chemistry, Pergamon, Oxford (1997), Vol. 4, p. 314.Google Scholar
  7. 7.
    J. M. Patterson, Synthesis, 281 (1976).Google Scholar
  8. 8.
    H. J. Anderson and C. E. Loader, Synthesis, 353 (1985).Google Scholar
  9. 9.
    N. Ezaki, M. Koyama, T. Shomura, T. Tsuruoka, and S. Inouye, J. Antibiot., 36, 1263 (1983).Google Scholar
  10. 10.
    V. M. Dembitskii and G. A. Tolstikov, Khimiya v Interesakh Ustoichivogo Razvitiya, 9, 169 (2001).Google Scholar
  11. 11.
    M. Koyama, N. Ohtani, F. Kai, I. Moriguchi, and S. Inouye, J. Med. Chem., 30, 552 (1987).CrossRefGoogle Scholar
  12. 12.
    R. Di Santo, R. Costi, M. Artico, S. Massa, G. Lampis, D. Deidda, and R. Pompei, Bioorg. Med. Chem. Lett., 8, 2931 (1998).CrossRefGoogle Scholar
  13. 13.
    D. G. Brown, R. E. Diehl, G. T. Lowen, D. P. Wright, Jr., C. F. Kukel, R. A. Herman, and R. W. Addor, US Pat. Appl. 5204332 (1993).Google Scholar
  14. 14.
    A. F. Pozharskii, Khim. Geterotsikl. Soedin., 723 (1977). [Chem. Heterocycl. Comp., 13, 583 (1977)].Google Scholar
  15. 15.
    A. F. Pozharskii, Theoretical Principles of the Chemistry of Heterocycles [in Russian], Khimiya, Moscow (1985), p. 53.Google Scholar
  16. 16.
    T. Gilchrist, Chemistry of Heterocyclic Compounds [Russian translation], Mir, Moscow (1996), p. 229.Google Scholar
  17. 17.
    J. Joule and K. Mills, Chemistry of Heterocyclic Compounds [Russian translation], Mir, Moscow (2004), p. 309.Google Scholar
  18. 18.
    K. J. Morgan and D. P. Morrey, Tetrahedron, 22, 57 (1966).CrossRefGoogle Scholar
  19. 19.
    A. R. Cooksey, K. J. Morgan, and D. P. Morrey, Tetrahedron, 26, 5101 (1970).CrossRefGoogle Scholar
  20. 20.
    K. J. Morgan and D. P. Morrey, Tetrahedron, 27, 245 (1971).CrossRefGoogle Scholar
  21. 21.
    D. V. Nguyen, R. A. Schiksnis, and E. L. Michelotti, Tetrahedron Lett., 50, 6807 (2009).CrossRefGoogle Scholar
  22. 22.
    J. M. Muchowski and D. R. Solas, Tetrahedron Lett., 24, 3455 (1983).CrossRefGoogle Scholar
  23. 23.
    R. X. Xu, H. J. Anderson, N. J. Gogan, C. E. Loader, and R. McDonald, Tetrahedron Lett., 22, 4899 (1981).CrossRefGoogle Scholar
  24. 24.
    H. Oda, T. Hanami, T. Iwashita, M. Kojima, M. Itoh, and Y. Hayashizaki, Tetrahedron, 63, 12747 (2007).CrossRefGoogle Scholar
  25. 25.
    A. R. Katritzky, E. F. V. Scriven, S. Majumder, R. G. Akhmedova, N. G. Akhmedov, and A. V. Vakulenko, ARKIVOC, 179 (2005).Google Scholar
  26. 26.
    A. M. Molins-Pujol, C. Moranta, C. Arroyo, M. T. Rodriguez, M. Carmen Meca, M. Dolors Pujol, and J. Bonal, J. Chem. Soc., Perkin Trans. 1, 2277 (1996).Google Scholar
  27. 27.
    A. M. Redman, J. S. Johnson, R. Dally, S. Swartz, H. Wild, H. Paulsen, Y. Caringal, D. Gunn, J. Renick, M. Osterhout, J. Kingery-Wood, R. A. Smith, W. Lee, J. Dumas, S. M. Wilhelm, T. J. Housley, A. Bhargava, G. E. Ranges, A. Shrikhande, D. Young, M. Bombara, and W. J. Scott, Bioorg. Med. Chem. Lett., 11, 9 (2001).CrossRefGoogle Scholar
  28. 28.
    D. Korakas and G. Varvounis, J. Heterocycl. Chem., 33, 611 (1996).CrossRefGoogle Scholar
  29. 29.
    E. Aiello, G. Dattolo, and G. Cirrincione, J. Chem. Soc., Perkin Trans. 1, 1 (1981).Google Scholar
  30. 30.
    W. J. Hale and W. V. Hoyt, J. Am. Chem. Soc., 37, 2538 (1915).CrossRefGoogle Scholar
  31. 31.
    C. Hotzel, A. Marroto, and U. Pindur, Eur. J. Med. Chem., 37, 367 (2002).CrossRefGoogle Scholar
  32. 32.
    A. Gŏmez-Sănchez, F.-J. Hidalgo, and J.-L. Chiara, Carbohydr. Res., 167, 55 (1987).CrossRefGoogle Scholar
  33. 33.
    J.-L. Chiara, A. Gŏmez-Sănchez, F.-J. Hidalgo, and I. Yruela, Carbohydr. Res., 188, 55 (1989).CrossRefGoogle Scholar
  34. 34.
    D. H. R. Barton, J. Kervagoret, and S. Z. Zard, Tetrahedron, 46, 7587 (1990).CrossRefGoogle Scholar
  35. 35.
    D. van Leusen, E. Flentge, and A. M. van Leusen, Tetrahedron, 47, 4639 (1991).CrossRefGoogle Scholar
  36. 36.
    N. Ono, E. Muratani and T. Ogawa, J. Heterocycl. Chem., 28, 2053 (1991).CrossRefGoogle Scholar
  37. 37.
    J. L. del Valle, C. Polo, T. Torroba, and S. Marcaccini, J. Heterocycl. Chem., 32, 899 (1995).CrossRefGoogle Scholar
  38. 38.
    R. ten Have, F. R. Leusink, and A. M. van Leusen, Synthesis, 871 (1996).Google Scholar
  39. 39.
    J. Boёlle, R. Schneider, P. Gĕrardin, and B. Loubinoux, Synthesis, 1451 (1997).Google Scholar
  40. 40.
    F. R. Leusink, R. ten Have, K. van der Berg, and A. M. van Leusen, J. Chem. Soc., Chem. Commun, 1401 (1992).Google Scholar
  41. 41.
    R. ten Have and A. M. van Leusen, Tetrahedron, 54, 1913 (1998).CrossRefGoogle Scholar
  42. 42.
    C. Dell’Erba, A. Mugnoli, M. Novi, M. Pani, G. Petrillo, and C. Tavani, Eur. J. Org. Chem., 903 (2000).Google Scholar
  43. 43.
    E. Freund, Ber. Dtsch. Chem. Ges., 52, 542 (1919).CrossRefGoogle Scholar
  44. 44.
    R. Gompper, H. Schaefer, Chem. Ber., 100, 591 (1967).CrossRefGoogle Scholar
  45. 45.
    M. Sone, Y. Tominaga, Y. Matsuda, and G. Kobayashi, Yakugaku Zasshi, 97, 262 (1977).Google Scholar
  46. 46.
    H. Schäfer, B. Bartho, and K. Gewald, J. Prakt. Chem., 319, 149 (1977).CrossRefGoogle Scholar
  47. 47.
    Y. Tominaga and Y. Matsuda, J. Heterocycl. Chem., 22, 937 (1985).CrossRefGoogle Scholar
  48. 48.
    N. Terang, B. K. Mehta, H. Ila, and H. Junjappa, Tetrahedron, 54, 12973 (1998).CrossRefGoogle Scholar
  49. 49.
    A. Kumar, H. Ila, and H. Junjappa, J. Chem. Soc., Chem. Commun., 593 (1976).Google Scholar
  50. 50.
    R. C. Young, R. C. Mitchell, T. H. Brown, C. R. Ganellin, R. Griffiths, M. Jones, K. K. Rana, D. Saunders, I. R. Smith, N. E. Sore, and T. J. Wilks, J. Med. Chem., 31, 656 (1988).CrossRefGoogle Scholar
  51. 51.
    A. K. Gupta, R. T. Chakrasali, H. Ila, and H. Junjappa, Synthesis, 141 (1989).Google Scholar
  52. 52.
    A. K. Gupta, K. R. Reddy, H. Ila, and H. Junjappa, J. Chem. Soc., Perkin Trans. 1, 1725 (1995).Google Scholar
  53. 53.
    S. S. Novikov,E. N. Safonova, and V. M. Belikov, Izv. Akad. Nauk SSSR, Ser. Khim., 1053 (1960). [Russ. Chem. Bull., 9, 984 (2009)].Google Scholar
  54. 54.
    S. S. Novikov and V. M. Belikov, Izv. Akad. Nauk SSSR, Ser. Khim., 1098 (1959). [Russ. Chem. Bull., 8, 1059 (1959)].Google Scholar
  55. 55.
    R. P. Wurz and A. B. Charette, Org. Lett., 7, 2313 (2005).CrossRefGoogle Scholar
  56. 56.
    E. B. Averina, N. V. Yashin, T. S. Kuznetsova, and N. S. Zefirov, Usp.Khim., 78, 963 (2009). [Russ. Chem. Rev., 78, 887 (2009)].Google Scholar
  57. 57.
    R. K. Boeckman, Jr., P. Shao, and J. J. Mullins, Org. Synth. Coll. Vol., 10, 696 (2004).Google Scholar
  58. 58.
    G. Haas, J. L. Stanton, and T. Winkler, J. Heterocycl. Chem., 18, 619 (1981).CrossRefGoogle Scholar
  59. 59.
    M. Tanaka, Y. Murakami, H. Morita, and K. Takagi, Chem. Pharm. Bull., 33, 2129 (1985).CrossRefGoogle Scholar
  60. 60.
    K. Takagi, M. Tanaka, Y. Murakami, K. Ogura, K. Ishii, H. Morita, and T. Aotsuka, J. Heterocycl. Chem., 24, 1003 (1987).CrossRefGoogle Scholar
  61. 61.
    N. Nishiwaki, M. Nakanishi, T. Hida, Y. Miwa, M. Tamura, K. Hori, Y. Tohda, and M. Ariga, J. Org. Chem., 66, 7535 (2001).CrossRefGoogle Scholar
  62. 62.
    N. Nishiwaki, T. Ogihara, T. Takami, M. Tamura, and M. Ariga, J. Org. Chem., 69, 8382 (2004).CrossRefGoogle Scholar
  63. 63.
    N. Nishiwaki, Y. Tohda, and M. Ariga, Bull. Chem. Soc. Jpn., 69, 1997 (1996).CrossRefGoogle Scholar
  64. 64.
    O. N. Zefirova and N. S. Zefirov, Vestn. MGU. Ser. 2. Khimiya, 43, 251 (2002).Google Scholar
  65. 65.
    L. Fu, G. W. Gribble, Tetrahedron Lett., 49, 3545 (2008).CrossRefGoogle Scholar
  66. 66.
    N. Ono, E. Muratani, Y. Fumoto, T. Ogawa, and K. Tazima, J. Chem. Soc., Perkin Trans. 1, 3819 (1998).Google Scholar
  67. 67.
    X. Han, C. Li, M. D. Mosher, K. C. Rider, P. Zhou, R. L. Crawford, W. Fusco, A. Paszczynski, and N. R. Natale, Bioorg. Med. Chem., 17, 1671 (2009).CrossRefGoogle Scholar
  68. 68.
    C. Della Rosa, M. Kneeteman, P. Mancini, Tetrahedron Lett., 48, 1435 (2007).CrossRefGoogle Scholar
  69. 69.
    M. Victoria Gómez, A. I. Aranda, A. Moreno, F. P. Cossío, A. de Cózar, Á. Díaz-Ortiz, A. de la Hoz, and P. Prieto, Tetrahedron, 65, 5328 (2009).CrossRefGoogle Scholar
  70. 70.
    P. Zhang, M. Egholm, N. Paul, M. Pingle, and D. E. Bergstrom, Methods, 23, 132 (2001).CrossRefGoogle Scholar
  71. 71.
    D. Loakes, D. M. Brown, S. Linde, and F. Hill, Nucleic Acids Res., 23, 2361 (1995).CrossRefGoogle Scholar
  72. 72.
    J. S. Oliver, K. A. Parker, and J. W. Suggs, Org. Lett., 3, 1977 (2001).CrossRefGoogle Scholar
  73. 73.
    D. E. Bergstrom, P. Zhang, and W. T. Johnson, Nucleic Acids Res., 25, 1935 (1997).CrossRefGoogle Scholar
  74. 74.
    S. I. Antsypovich, Usp. Khim., 71, 81 (2002). [Russ. Chem. Rev., 71, 71 (2002)].Google Scholar
  75. 75.
    J. W. Lown and K. Krowicki, J. Org. Chem., 50, 3774 (1985).CrossRefGoogle Scholar
  76. 76.
    S. L. Grokhovskii, A. L. Zhuze, and B. P. Gottikh, Bioorg. Khimiya, 1, 1616 (1975).Google Scholar
  77. 77.
    M. Lee, D. M. Coulter, and J. W. Lown, J. Org. Chem., 53, 1855 (1988).CrossRefGoogle Scholar
  78. 78.
    S. L. Grokhovskii, S. M. Nikitin, A. A. Khorlin, A. L. Zhuze, A. S. Krylov, M. V. Mikhailov, A. S. Zasedatelev, G. V. Gurskii, and B. P. Gottikh, in: G. K. Skryabin, S. M. Navashin (editors), Mechanisms of Biosynthesis of Antibiotics [in Russian], Nauka, Moscow (1986), p. 202.Google Scholar
  79. 79.
    M. Bialer, B. Yagen, R. Mechoulam, and Y. Becker, J. Pharm. Sci., 69, 1334 (1980).CrossRefGoogle Scholar
  80. 80.
    M.-C. Liu and C. W. Ong, Tetrahedron, 65, 8389 (2009).CrossRefGoogle Scholar
  81. 81.
    M. Valík, B. Dolenský, E. Herdtweck, and V. Král, Tetrahedron: Asymmetry, 16, 1969 (2005).CrossRefGoogle Scholar
  82. 82.
    M. Valík, J. Malina, L. Palivec, J. Foltynova, M. Tkadlecova, M. Urbanova, V. Brabec, and V. Král, Tetrahedron, 62, 8591 (2006).CrossRefGoogle Scholar
  83. 83.
    A. Sen and V. Krishnan, Tetrahedron Lett., 37, 5421 (1996).CrossRefGoogle Scholar
  84. 84.
    S. M. LeCours, H.-W. Guan, S. G. DiMagno, C. H. Wang, and M. J. Therien, J. Am. Chem. Soc., 118, 1497 (1996).CrossRefGoogle Scholar
  85. 85.
    L. Karki, F. W. Vance, J. T. Hupp, S. M. LeCours, and M. J. Therien, J. Am. Chem. Soc., 120, 2606 (1998).CrossRefGoogle Scholar
  86. 86.
    A. A. Semenov and V. G. Kartsev, Principles of the Chemistry of Natural Compounds [in Russian], MBFNP, Moscow (2009), Vol. 2, p. 30.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Omsk F. M. Dostoevsky State UniversityOmskRussia

Personalised recommendations