Chemistry of Heterocyclic Compounds

, Volume 47, Issue 7, pp 811–816 | Cite as

Preparation of differentiated diamides of 4,5,6,7-tetrahydropyrazolo[1,5-a]pyridine-2,6- and −3,6-dicarboxylic acids suitable for parallel synthesis

  • E. Erdmane
  • R. ZemriboEmail author

1,3-Dipolar cycloaddition of a bicyclic sydnone to a propargylic acid amide affords 4,5,6,7-tetra-hydropyrazolo[1,5-a]pyridine-2,6- and −3,6-dicarboxylic acid monoamides which are further converted to corresponding differentiated diamides.

Кeywords sydnones 4,5,6,7-tetrahydropyrazolo[1,5-a]pyridines 1,3-dipolar cycloaddition 


  1. 1.
    A. Chauhan, P. K. Sharma, and N. Kaushik, Int. J. Chem. Tech Res., 3, 11 (2011).Google Scholar
  2. 2.
    H. A. Stefani, C. M. P. Pereira, R. B. Almeida, R. C. Braga, K. P. Guzen, and R. Cella, Tetrahedron Lett., 46, 6833 (2005).CrossRefGoogle Scholar
  3. 3.
    A. A. Bekhit, A. Hymete, A. E.-D. A. Bekhit, A. Damtew, and H. Y. Aboul-Enein, Mini Rev. Med. Chem., 10, 1014 (2010).Google Scholar
  4. 4.
    K. Makino, H. S. Kim, and Y. Kurasawa, J. Heterocycl. Chem., 35, 489 (1998).CrossRefGoogle Scholar
  5. 5.
    K. Makino, H. S. Kim, and Y. Kurasawa, J. Heterocycl. Chem., 36, 321 (1999). пoCrossRefGoogle Scholar
  6. 6.
    S. Schenone, O. Bruno, M. Radi, and M. Botta, Mini-Rev. Org. Chem., 6, 220 (2009).CrossRefGoogle Scholar
  7. 7.
    L. Commeiras, S. C. Woodcock, J. E. Baldwin, R. M. Adlington, A. R. Cowley, and P. J. Wilkinson, Tetrahedron, 60, 933 (2004).CrossRefGoogle Scholar
  8. 8.
    S. Löber, H. Hübner, and P. Gmeiner, Bioorg. Med. Chem. Lett., 9, 97 (1999).CrossRefGoogle Scholar
  9. 9.
    K. Awano and S. Suzue, Chem. Pharm. Bull., 34, 2833 (1986).CrossRefGoogle Scholar
  10. 10.
    J. Elsner, F. Boeckler, F. W. Heinemann, H. Hübner, and P. Gmeiner, J. Med. Chem., 48, 5771 (2005).CrossRefGoogle Scholar
  11. 11.
    I. I. Grandberg, S. B. Nikitina, V. A. Moskalenko, and V. I. Minkin, Chem. Heterocycl. Comp., 3, 837 (1967). [Khim. Geterotsikl Soedin., 1076 (1967)].CrossRefGoogle Scholar
  12. 12.
    A. M. Venkatesan, A. Agarwal, T. Abe, H. Ushirogochi, I. Yamamura, M. Ado, T. Tsuyoshi, O. Dos Santos, Y. Gu, F.-W. Sum, Z. Li, G. Francisco, Y.-I. Lin, P. J. Petersen, Y. Yang, T. Kumagai, W. J. Weiss, D. M. Shlaes, J. R. Knox, and T. S. Mansour, J. Med. Chem., 49, 4623 (2006).CrossRefGoogle Scholar
  13. 13.
    S. M. Allin, W. R. S. Barton, W. R. Bowman, E. Bridge, M. R. J. Elsegood, T. McInally, and V. McKee, Tetrahedron, 64, 7745 (2008).CrossRefGoogle Scholar
  14. 14.
    D. L. Browne, J. F. Vivat, A. Plant, E. Gomez-Bengoa, and J. P. A. Harrity, J. Am. Chem. Soc., 131, 7762 (2009).CrossRefGoogle Scholar
  15. 15.
    P. L. Anderson, J. P. Hasak, A. D. Kahle, N. A. Paolella, and M. J. Shapiro, J. Heterocycl. Chem., 18, 1149 (1981).CrossRefGoogle Scholar
  16. 16.
    Y. Miki, J. Tasaka, K. Uemura, K. Miyazeki, and J. Yamada, Heterocycles, 43, 2249 (1996).CrossRefGoogle Scholar
  17. 17.
    S. D. Larsen and E. Martinborough, Tetrahedron Lett., 30, 4625 (1989).CrossRefGoogle Scholar
  18. 18.
    D. Ranganathan and S. Bamezai, Tetrahedron Lett., 24, 1067 (1983).CrossRefGoogle Scholar
  19. 19.
    J. N. Lee, D. J. Jeon, Y. M. Kim, K. M. Kim, and J. H. Song, Bull. Korean Chem. Soc., 21, 761 (2000).Google Scholar
  20. 20.
    F. J. Urban, J. Heterocycl. Chem., 32, 857 (1995).CrossRefGoogle Scholar
  21. 21.
    M. M. Faul, A. M. Ratz, K. A. Sullivan, W. G. Trankle, and L. L. Winneroski, J. Org. Chem., 66, 5772 (2001).CrossRefGoogle Scholar
  22. 22.
    C. B. Kanner and U. K. Pandit, Tetrahedron, 38, 3597 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.Latvian Institute of Organic SynthesisRigaLatvia

Personalised recommendations