Chemistry of Heterocyclic Compounds

, Volume 47, Issue 2, pp 182–193 | Cite as

Preparation of chiral pyrrole derivatives by the Paal-Knorr reaction

  • I. O. Ryzhkov
  • I. A. Andreev
  • G. M. Belov
  • A. V. KurkinEmail author
  • M. A. Yurovskaya

A new approach has been developed for the synthesis of N-alkylpyrroles with a chiral substituent at the nitrogen atom by the Paal-Knorr reaction using esters of amino acids as the source of chirality.


1,4-dicarbonyl compounds 2,5-dimethyl- and 5-aryl-2-methylpyrroles with a chiral substituent at the nitrogen atom chiral pyrrole derivatives iodine-catalyzed cyclization Paal-Knorr method Stetter reaction 


  1. 1.
    S. Thirumalairajan, B. M. Pearce, and A. Thompson, Chem. Commun., 46, 1797 (2010).CrossRefGoogle Scholar
  2. 2.
    J. T. Gupton, Top. Heterocycl. Chem., 2, 53 (2006).CrossRefGoogle Scholar
  3. 3.
    N. B. Dyatkina, C. D. Roberts, J. D. Keicher, Y. D. Joshua, P. Nadherny, W. Zhang, U. Schmitz, A. Kongpachith, K. Fung, A. A. Novikov, L. Lou, M. Velligan, A. A. Khorlin, and M. S. Chen, J. Med. Chem., 45, 805 (2002).CrossRefGoogle Scholar
  4. 4.
    M. G. Banwell, D. A. S. Beck, P. C. Stanislawski, M. O. Sydnes, and R. M. Taylor, Curr. Org. Chem., 9, 1589 (2005).CrossRefGoogle Scholar
  5. 5.
    R. I. J. Amos, B. S. Gourlay, and P. P. Molesworth, Tetrahedron, 61, 8226 (2005).CrossRefGoogle Scholar
  6. 6.
    T. Hoffmann, J. Agric. Food Chem., 46, 3902 (1998).CrossRefGoogle Scholar
  7. 7.
    W. Greene and P. G. Wuts, Protective Groups in Organic Synthesis, 2nd ed., John Wiley & Sons, New York (1991).Google Scholar
  8. 8.
    G. W. H. Cheeseman and C. W. Bird, in: Comprehensive Heterocyclic Chemistry, vol. 4, Pergamon Press, Oxford (1984), p. 89.Google Scholar
  9. 9.
    V. F. Ferreira, M. C. B. V. De Souza, A. C. Cunha, L. O. R. Pereira, and M. L. G. Ferreira, Org. Prep. Proced. Int., 33, 411 (2001).CrossRefGoogle Scholar
  10. 10.
    R. J. Sundberg, in: Comprehensive Organic Functional Group Transformations II, vol. 2, Pergamon Press, Oxford (1995), p. 119.Google Scholar
  11. 11.
    B. K. Banik, S. Samajdar, and I. Banik, J. Org. Chem., 69, 213 (2004).CrossRefGoogle Scholar
  12. 12.
    D. Wobschall and D. A. Norton, J. Am. Chem. Soc., 87, 3559 (1965).CrossRefGoogle Scholar
  13. 13.
    F. Toda, K. Mori, J. Okada, M. Node, A. Itoh, K. Omine, and K. Fuji, Chem. Lett., 131 (1988).Google Scholar
  14. 14.
    I. van Wijngaarden, C. G. Kruse, R. van Hes, J. A. M. van der Heyden, and M. T. M. Tulp, J. Med. Chem., 30, 2099 (1987).CrossRefGoogle Scholar
  15. 15.
    J. R. Carson, M. C. Jetter, J. S. Lee, and M. A. Youngman, US Patent 0192720 (2004),
  16. 16.
    G. A. Pinna, G. Loriga, G. Murineddu, G. Grella, M. Mura, L. Vargiu, C. Murgioni, and P. La Colla, Chem. Pharm. Bull., 49, 1406 (2001).CrossRefGoogle Scholar
  17. 17.
    A. Gossauer, Die Chemie der Pyrrole, Springer Verlag, New York (1974).Google Scholar
  18. 18.
    H. Stetter, Angew. Chem. Int. Ed. Eng., 15, 639 (1976).CrossRefGoogle Scholar
  19. 19.
    M. K. Basu, S. Samajdar, F. F. Becker, and B. K. Banik, Synlett, 319 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • I. O. Ryzhkov
    • 1
  • I. A. Andreev
    • 1
  • G. M. Belov
    • 1
  • A. V. Kurkin
    • 1
    Email author
  • M. A. Yurovskaya
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations