Intra- and intermolecular thermal transformations of 2-acyl- and 2-alkoxycarbonyl-N-phthalimidoaziridines

  • M. A. KuznetsovEmail author
  • V. V. Voronin

Heating 2-acyl- and 2-alkoxycarbonyl-N-phthalimidoaziridines leads to substituted oxazoles in 45-65% yield. Only esters of oxazolecarboxylic acids are formed when the aziridine contains acyl and alkoxy groups. The thermolysis of the same aziridines in the presence of N-phenylmaleimide and the dimethyl ester of acetylenedicarboxylic acid gives both oxazoles and the products of 1,3-dipolar cycloaddition from aziridines with two substituents at the carbon atoms but only oxazoles from trisubstituted aziridines.


N-aminopyrrolidines N-aminopyrrolines aziridines azomethinylids 1,3-oxazoles pyrroles 1,3-dipolar cycloaddition 


  1. 1.
    J. W. Lown, in: A. Padwa (editor), 1,3-Dipolar Cycloaddition Chemistry, vol. 1, John Wiley & Sons, New York (1984), p. 653.Google Scholar
  2. 2.
    L. M. Harwood and R. J. Vickers, Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, in: A. Padwa and W. H. Pearson (editors), The Chemistry of Heterocyclic Compounds, vol. 59, John Wiley & Sons, Hoboken (2003), p. 169.Google Scholar
  3. 3.
    J. Charrier, A. Foucaud, H. Person, and E. Loukakou, J. Org. Chem., 48, 481 (1983).CrossRefGoogle Scholar
  4. 4.
    M. A. Kuznetsov, A. S. Pan’kova, A. V. Ushkov, and S. I. Selivanov, Zh. Org. Khim., 44, 807 (2008).Google Scholar
  5. 5.
    M. A. Kuznetsov, A. V. Ushkov, S. I. Selivanov, A. S. Pan’kova, and A. Linden, Zh. Org. Khim., 45, 1200 (2009).Google Scholar
  6. 6.
    E. V. Beletskii and M. A. Kuznetsov, Zh. Org. Khim., 45, 1237 (2009).Google Scholar
  7. 7.
    H. Person, K. Luanglath, M. Baudru, and A. Foucaud, Bull. Soc. Chim. France, 1989 (1976).Google Scholar
  8. 8.
    M. A. Kuznetsov, L. M. Kuznetsova, J. G. Schantl, and K. Wurst, Eur. J. Org. Chem., 1309 (2001).Google Scholar
  9. 9.
    R. S. Atkinson and J. J. Malpass, J. Chem. Soc., Perkin Trans. 1, 2242 (1977).Google Scholar
  10. 10.
    A. S. Pan’kova, Author’s Abstract of Chem. Sci. Cand. Dissertation, St. Petersburg (2009).Google Scholar
  11. 11.
    H. E. Gottlieb, V. Kotlyar, and A. Nudelman, J. Org. Chem., 62, 7512 (1997).CrossRefGoogle Scholar
  12. 12.
    H. D. K. Drew and H. H. Hatt, J. Chem. Soc., 16 (1937).Google Scholar
  13. 13.
    U. P. Kreher, A. E. Rosamilia, C. L. Raston, J. L. Scott, and C. R. Strauss, Org. Lett., 5, 3107 (2003).CrossRefGoogle Scholar
  14. 14.
    H. O. House and H. Babad, J. Org. Chem., 28, 90 (1963).CrossRefGoogle Scholar
  15. 15.
    L. Tietze and T. Eicher, Preparative Organic Chemistry [Russian translation], Mir, Moscow (1999), p. 209.Google Scholar
  16. 16.
    G. V. Golodnikov and T. V. Mandel’shtam, Laboratory Textbook in Organic Synthesis [in Russian], Izd. Leningradsk. Gos. Univ., Leningrad (1976), p. 358.Google Scholar
  17. 17.
    D. Papa, F. Schenk, F. Villani, and E. Klingsberg, J. Am. Chem. Soc., 70, 3359 (1948).Google Scholar
  18. 18.
    P. Chiang, M. Rommel, and J. Bode, J. Am. Chem. Soc., 131, 8714 (2009).CrossRefGoogle Scholar
  19. 19.
    O. Anaç, Ö. Sezer, Ö. Aldaş, F. Ş. Güngör, and M. Ş. Cansever, Tetrahedron Lett., 49, 1062 (2008).CrossRefGoogle Scholar
  20. 20.
    K. C. Nicolaou, J. Hao, M. V. Reddy, P. B. Rao, G. Rassias, S. A. Snyder, X. Huang, D. Y.-K. Chen, W. E. Brenzovich, N. Giuseppone, P. Giannakakou, and A. O’Brate, J. Am. Chem. Soc., 126, 12897 (2004).CrossRefGoogle Scholar
  21. 21.
    R. P. Foulds and R. Robinson, J. Chem. Soc., 103, 1768 (1913).Google Scholar
  22. 23.
    C. Wan, J. Zhang, S. Wang, J. Fan, and Z. Wang, Org. Lett., 12, 2338 (2010).CrossRefGoogle Scholar
  23. 24.
    A. Herrera, R. Martinez-Alvarez, P. Ramiro, D. Molero, and J. Almy, J. Org. Chem., 71, 3026 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations