Advertisement

Chemistry of Heterocyclic Compounds

, Volume 47, Issue 2, pp 130–154 | Cite as

N-substituted 2,5-di(2-thienyl)pyrroles: application, production, properties, and electrochemical polymerization (review)

  • G. G. AbashevEmail author
  • A. Y. Bushueva
  • E. V. Shklyaeva
Article

In this review methods for the synthesis of substituted 2,5-di(2-thienyl)pyrroles are described, and various aspects of their application are discussed. The main emphasis is on the electrochemical behavior of the compounds, the possibility of their electrochemical polymerization, and their use as monomers for the production of conducting polymers – components for molecular electronics.

Keywords

2,5-di(2-thienyl)pyrrole conjugated polymers thienyl-pyrrole copolymers electrochemical characteristics electropolymerization heterocyclic synthesis 

Notes

The work was carried out with support from the Russian Foundation for Basic Research (projects 05-03-32848a, 07-03-96023-r-ural-a, and 10-03-9603-r-ural-a).

References

  1. 1.
    H. S. Nalwa, Handbook of Organic Conductive Molecules and Polymers, John Wiley & Sons, New York, 1997.Google Scholar
  2. 2.
    T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds, Handbook of Conducting Polymers, 2nd ed., Marcel Dekker, New York, 1998.Google Scholar
  3. 3.
    J. L. Reddinger and J. R. Reynolds, Adv. Polym. Sci., 145, 57 (1999).CrossRefGoogle Scholar
  4. 4.
    R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Lögdlund, and W. R. Salaneck, Nature, 397, 121 (1999).CrossRefGoogle Scholar
  5. 5.
    I. D. Brotherston, D. S. K. Mudigonda, J. M. Osborn, J. Belk, J. Chen, D. C. Loveday, J. L. Boehme, J. P. Ferraris, and D. L. Meeker, Electrochim. Acta, 44, 2993 (1999).CrossRefGoogle Scholar
  6. 6.
    L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Adv. Mater., 12, 481 (2000).CrossRefGoogle Scholar
  7. 7.
    E. Nikolaeva, Chem. J., 12, 28 (2002) (Rus.).Google Scholar
  8. 8.
    J. Roncali, Chem. Rev., 92, 711 (1992).CrossRefGoogle Scholar
  9. 9.
    A. J. Heeger, Curr. Appl. Phys., 1, 247 (2001).CrossRefGoogle Scholar
  10. 10.
    T. V. Vernitskaya and O. M. Efimov, Usp. Khim., 66, 489 (1997).Google Scholar
  11. 11.
    S. Sadki, P. Schottland, N. Brodie, and G. Sabouraud, Chem. Soc. Rev., 29, 283 (2000).CrossRefGoogle Scholar
  12. 12.
    J. C. Chiang and A. G. MacDiarmid, Synth. Met., 13, 193 (1986).CrossRefGoogle Scholar
  13. 13.
    T. A. Yurre, L. I. Rudaya, N. V. Klimov, and V. V. Shamanin, Fizika i Tekhnika Poluprovodnikov, 37, 835 (2003).Google Scholar
  14. 14.
    M. Can, H. Özaslan, N. Ö. Pekmez, and A. Yilidiz, Acta Chem. Slov., 50, 741 (2003).Google Scholar
  15. 15.
    S. Kuwabata, S. Ito, and H. J. Yoneyama, J. Electrochem. Soc., 135, 1691 (1988).CrossRefGoogle Scholar
  16. 16.
    S.-K. Cha, J. Polym. Sci., Part B: Polym. Phys., 35, 165 (1997).CrossRefGoogle Scholar
  17. 17.
    E. M. Peters and J. D. van Dyke, J. Polym. Sci., Part A: Polym Chem., 30, 1891 (1992).CrossRefGoogle Scholar
  18. 18.
    S. Naitoh, K. Sanui, and N. Ogata, J. Chem. Soc., Chem. Commun., 117, 1348 (1986).CrossRefGoogle Scholar
  19. 19.
    B. L. Flunt, E. M. Peters, and J. D. van Dyke, J. Polym. Sci., Part A.; Polym. Chem., 24, 1529 (1986).CrossRefGoogle Scholar
  20. 20.
    S. Naitoh, Synth. Met., 18, 237 (1987).CrossRefGoogle Scholar
  21. 21.
    J. P. Ferraris and G. D. Skiles, Polymer, 28, 179 (1987).CrossRefGoogle Scholar
  22. 22.
    J. P. Ferraris, R. G. Andrus, and D. C. Hrncir, J. Chem. Soc., Chem. Commun., 18, 1318 (1989).CrossRefGoogle Scholar
  23. 23.
    J. P. Ferraris and T. R. Hanlon, Polymer, 30, 1319 (1989).CrossRefGoogle Scholar
  24. 24.
    M.-T. Zhao, M. Samoc, B. P. Singh, and P. N. Prasad, J. Phys. Chem., 93, 7916 (1989).CrossRefGoogle Scholar
  25. 25.
    C. Alemán, V. M. Domingo, L. Fajari, L. Juliá, and A. Karpfen, J. Org. Chem., 63, 1041 (1998).CrossRefGoogle Scholar
  26. 26.
    H. Röockel, J. Huber, R. Gleiter, and Dr. W. Schuhmann, Adv. Mater., 6, 568 (1994).CrossRefGoogle Scholar
  27. 27.
    J. Carrasco and A. Figueras, Synth. Met., 61, 253 (1993).CrossRefGoogle Scholar
  28. 28.
    E. Brillas, J. Carrasco, A. Figueras, F. Urpi, and T. F. Otero, J. Electroanal. Chem., 392, 55 (1995).CrossRefGoogle Scholar
  29. 29.
    R. E. Niziurski-Mann, Ch. Scordilis-Kelley, T.-L. Liu, M. P. Cava, and R. T. Carlin, J. Am. Chem. Soc., 115, 887 (1993).CrossRefGoogle Scholar
  30. 30.
    P. Audebert, J.-M. Catel, G. Le Coustumer, V. Duchenet, and P. Hapiot, J. Phys. Chem. B., 102, 8661 (1998).CrossRefGoogle Scholar
  31. 31.
    P. Audebert, J.-M. Catel, G. Le Coustumer, V. Duchenet, and P. Hapiot, J. Phys. Chem., 99, 11923 (1995).CrossRefGoogle Scholar
  32. 32.
    L. Guyard, P. Hapiot, and P. Neta, J. Phys. Chem. B, 101, 5698 (1997).CrossRefGoogle Scholar
  33. 33.
    V. Wintgens, P. Valet, and F. Ganier, J. Phys. Chem., 98, 228 (1994).CrossRefGoogle Scholar
  34. 34.
    M. Vautrin, P. Leriche, A. Gorgues, and M. P. Cava, Electrochem. Commun., 1, 233 (1999).CrossRefGoogle Scholar
  35. 35.
    J. P. Albarella, J. O. Noell, P. O. Vogelhut, and F. E. L. Ward, US Pat. 4886625 (1989); http://www.freepatentsonline.com/4886625.html
  36. 36.
    J. P. Albarella, N.-H. Lin, US Pat. 5021586 (1991); http://www.freepatentsonline.com/5021586.html
  37. 37.
    J. P. Albarella, J. O. Noell, P. O. Vogelhut, and F. E. L. Ward, US Pat. 5210217 (1993); http://www.freepatentsonline.com/5210217.html
  38. 38.
    Z. Mekhalif, A. Lazarescu, L. Hevesi, J.-J. Pireaux, J. Delhalle, J. Mater. Chem., 8, 545 (1998).CrossRefGoogle Scholar
  39. 39.
    G. Cooke, J. F. Garety, S. Mabruk, G. Rabani, V. M. Rotello, Gh. Surpateanu, and P. Woisel, Tetrahedron Lett., 47, 783 (2006).CrossRefGoogle Scholar
  40. 40.
    G. Cooke, J. F. Garety, B. Jordan, N. Kryvokhyzha, A. Parkin, G. Rabani, and V. M. Rotello, Org. Lett., 8, 2297 (2006).CrossRefGoogle Scholar
  41. 41.
    P. Audebert, S. Sadki, F. Miomandre, Ph. Hapiot, and K. Chane-Ching, New J. Chem., 27, 798 (2003).CrossRefGoogle Scholar
  42. 42.
    B. C. Thompson, K. A. Abboud, J. R. Reynolds, K. Nakatani, and P. Audebert, New J. Chem., 29, 1128 (2005).CrossRefGoogle Scholar
  43. 43.
    S. Varis, M. Ak, C. Tanyeli, I. M. Akhmedov, and L. Toppare, Solid State Sci., 8, 1477 (2006).CrossRefGoogle Scholar
  44. 44.
    S. Varis, M. Ak, C. Tanyeli, I. M. Akhmedov, and L. Toppare, Eur. Polym. J., 42, 2352 (2006).CrossRefGoogle Scholar
  45. 45.
    S. Tarkuc, E. Sahmetlioglu, C. Tanyeli, I. M. Akhmedov, and L. Toppare, Sensors Activators, 121, 622 (2007).CrossRefGoogle Scholar
  46. 46.
    B. Yigitsoy, S. Varis, C. Tanyeli, I. M. Akhmedov, and L. Toppare, Thin Solid Films, 515, 3898 (2007).CrossRefGoogle Scholar
  47. 47.
    U. H. Ylidiz, E. Sahin, I. M. Akhmedov, C. Tanyeli, and L. Toppare, J. Polym. Sci., Part A, Polym. Chem., 44, 2215 (2006).CrossRefGoogle Scholar
  48. 48.
    E. Sahin, E. Sahmetlioglu, I. M. Akhmedov, C. Tanyeli, and L. Toppare, Org. Electron., 7, 351 (2006).CrossRefGoogle Scholar
  49. 49.
    P. E. Just, K. I. Chane-Ching, and P. C. Lacaze, Tetrahedron, 58, 3467 (2002).CrossRefGoogle Scholar
  50. 50.
    J. P. Conde, M. R. J. Elsegood, and K. S. Ryder, Acta Crystalogr., C60, 0166 (2004).Google Scholar
  51. 51.
    B. Yigitsoy, S. Varis, C. Tanyeli, I. M. Akhmedov, and L. Toppare, Electrochim. Acta, 52, 6561 (2007).CrossRefGoogle Scholar
  52. 52.
    P. Camurlu, E. Sahmetlioğlu, E. Sahin, I. M. Akhmedov, C. Tanyeli, and L. Toppare, Thin Solid Films, 516, 4139 (2008).Google Scholar
  53. 53.
    A. Cihaner and F. Algi, Turk. J. Chem, 33, 759 (2009).Google Scholar
  54. 54.
    S. Tuncagil, S. Kiralp, S. Varis, and L. Toppare, React. Funct. Polym., 68, 710 (2008).Google Scholar
  55. 55.
    G. G. Abashev, A. Y. Bushueva, P. T. Pavlov, V. A. Romanova, and E. V. Shklyaeva, in: Enamines in Organic Synthesis. Materials of IV All-Russian Conference [in Russian], Perm (2007), p. 28.Google Scholar
  56. 56.
    A. Y. Bushueva, E. V. Shklyaeva, and G. G. Abashev, Mendeleev Commun., 19, 329 (2009).CrossRefGoogle Scholar
  57. 57.
    A. Y. Bushueva, Author’s Abstract of Thesis for Degree of Candidate of Chemical Sciences [in Russian], Perm (2010); http://itch.perm.ru/diss_2010.html
  58. 58.
    G. G. Abashev, A. Yu. Bushueva, E. A. Ignatenko, and E. V. Shklyaeva, in: Collection of Papers of International Conference “Technical Chemistry. From Theory to Practice” [in Russian], Perm (2010), Vol. 1, p. 453.Google Scholar
  59. 59.
    K. Ogura, A. Suzuki, H. Yanai, S. Matsumoto, M. Akazome, and T. Fukuda, Nippon Kagakkai Koen Yokoshu, 76, 421 (1999); http://sciencelinks.jp/j-east/article/200001/000020000100A0025930.php Google Scholar
  60. 60.
    K. Ogura, H. Yanai, M. Miokawa, and M. Akazome, Tetrahedron Lett., 40, 8887 (1999).CrossRefGoogle Scholar
  61. 61.
    H. Yanai, D. Yoshizawa, S. Tanaka, T. Fukuda, M. Akazome, and K. Ogura, Chem. Lett., 29, 238 (2000).CrossRefGoogle Scholar
  62. 62.
    K. Ogura, US Pat., 6335452 (2002); http://www.freepatentsonline.com/6335452.pdf
  63. 63.
    K. Ogu and K. Ogura, Nippon Kagakkai Koen Yokoshu, 85, 1355 (2005); http://sciencelinks.jp/j-east/article/200517/000020051705A0555650.php Google Scholar
  64. 64.
    K. Ogura, R. Zhao, H. Yanai, K. Maeda, R. Tozawa, Sh. Matsumoto, and M. Akazome, Bull. Chem. Soc. Jpn., 75, 2359 (2002).CrossRefGoogle Scholar
  65. 65.
    K. Ogura, in: Super-Functionality Organic Devices. Proceedings of Int. Symp., IPAP Conf., 2005, vol. 6, p. 57; www.ipap.jp/proc/cs6/pdf/cs6_057.pdf
  66. 66.
    K. Ogura, R. Zhao, T. Mizuoka, M. Akazome, and S. Matsumoto, Org. Biol. Chem., 1, 2845 (2003).CrossRefGoogle Scholar
  67. 67.
    L. F. Schweiger, K. S. Ryder, D. G. Morris, A. Glidle, and J. M. Cooper, J. Mater. Chem., 10, 107 (2000).CrossRefGoogle Scholar
  68. 68.
    S. Oberoi, Diss. of Dr. rer. nat., Dresden (2006).Google Scholar
  69. 69.
    S. A. Sapp, D. T. Mitchell, and C. R. Martin, Chem. Mater., 11, 1181 (1999).CrossRefGoogle Scholar
  70. 70.
    S. Cosnier and H. Gondran, Analysis, 27, 558 (1999).CrossRefGoogle Scholar
  71. 71.
    A. Zaid, H. G. Hughes, E. Porceddu, and F. Nicolas, Glossary of Biotechnology for Food and Agricultures, FAOUN, Rome, 2001.Google Scholar
  72. 72.
    K.-S. Kim, M.-S. Kang, H. Ma, and A. K.-Y. Jen, Chem. Mater., 16, 5058 (2004).CrossRefGoogle Scholar
  73. 73.
    M. T. Zin, H. Ma, M.-S. Kang, S.-H. Kang, K.-S. Kim, M. H. Zareie, K. Leong, M. Sarikaya, and A. K.-Y. Jen, Polym. Mater. Sci., Eng., 95, 1071 (2006).Google Scholar
  74. 74.
    A. R. Sørensen, L. Overgaard, and I. Johannsen, Synth. Met., 55, 1626 (1993).CrossRefGoogle Scholar
  75. 75.
    V. M. Domingo, C. Aleman, E. Brillas, and L. Julia, J. Org. Chem., 66, 4058 (2001).CrossRefGoogle Scholar
  76. 76.
    K. Ono, H. Totani, M. Ohkita, K. Saito, and M. Kato, Heterocycles, 64, 223 (2004).CrossRefGoogle Scholar
  77. 77.
    J. Nakazaki, I. Chung, M. M. Matsushita, T. Sugawara, R. Watanabe, A. Izuoka, and Y. Kawada, J. Mater. Chem., 13, 1011 (2003).CrossRefGoogle Scholar
  78. 78.
    J. Nakazaki, I. Chung, R. Watanabe, T. Ishitsuka, Y. Kawada, M. M. Matsushita, and T. Sugawara, Internet Electron. J. Mol. Design, 2, 112 (2003).Google Scholar
  79. 79.
    T. Atalar, A. Cihaner, F. Algi, Turk. J. Chem., 33, 313 (2009).Google Scholar
  80. 80.
    V. Tamilavan, P. Sakthivel, Y. Li, M. Song, C.-H. Kim. S.-H. Jin, and M. H. Hyun, J. Polym. Sci., Part A: Polym. Chem., 48, 3169 (2010).CrossRefGoogle Scholar
  81. 81.
    M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. Heeger, and C. J. Brabec, Adv. Mater., 18, 789 (2006).CrossRefGoogle Scholar
  82. 82.
    A. Dhanabalan, P. A. van Hal, J. K. J. van Duren, J. L. J. van Dongen, and R. A. J. Janssen, Synth. Met., 119, 169 (2001).CrossRefGoogle Scholar
  83. 83.
    C. Brabec, U. Scherf, and V. Dyakonov (editors), Organic Photovoltaics: Materials, Device Physics and Manufacturing Technologies, Wiley-VCH, Weinheim (2008).Google Scholar
  84. 84.
    J.-G. Kang, S.-I. Oh, D.-H. Cho, M.-K. Nah, C. Park, Y. J. Bae, W. T. Han, Y. J. Park, A. W. Lee, I. T. Kim, Bull. Korean Chem. Soc., 30, 1157 (2009).CrossRefGoogle Scholar
  85. 85.
    N. A. Lengkeek, J. M. Harrowfield, and G. A. Koutsantonis, Synth. Met., 160, 72 (2010).CrossRefGoogle Scholar
  86. 86.
    L. I. Belen’kii, G. P. Gromova, and V. I. Smirnov, Khim. Geterotsikl. Soedin., 1356 (2008). [Chem. Heterocycl. Comp., 44, 1092 (2008)].Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • G. G. Abashev
    • 1
    Email author
  • A. Y. Bushueva
    • 1
  • E. V. Shklyaeva
    • 2
  1. 1.Institute of Technical ChemistryUral Branch of the Russian Academy of SciencesPermRussia
  2. 2.Natural Sciences InstitutePerm State UniversityPermRussia

Personalised recommendations