Advertisement

Chemistry of Heterocyclic Compounds

, Volume 47, Issue 1, pp 96–100 | Cite as

A short and efficient method for the synthesis of pyrimido[1,2-a]quinolines

  • A. Poursattar Marjani
  • J. KhalafyEmail author
Article

A new series of pyrimido[1,2-a]quinolines has been synthesized in good to excellent yields by rearrangement of N-quinolinylisoxazol-5(2H)-ones, substituted at nitrogen, with 2-chloroquinoline derivatives under mild base-catalyzed conditions. This method has the advantage of a short synthetic route.

Keywords

pyrimido[1,2-a]quinoline N-quinolinylisoxazolones base-induced rearrangement 

Notes

We are grateful for financial support from the Urmia University.

References

  1. 1.
    A. Dömling, Chem. Rev., 106, 17 (2006).CrossRefGoogle Scholar
  2. 2.
    U. Jordis, F. Sauter, and S. M. Siddiqi, Vest. Slov. Kem. Drus., 33, 217 (1986).Google Scholar
  3. 3.
    M. Sugiyama, T. Sakamoto, K. Tabata, K. Endo, M. Ito, M. Kobayashi, and H. Fukumi, Chem. Pharm. Bull., 37, 2122 (1989).Google Scholar
  4. 4.
    J. Shishoo, M. B. Devani, V. S. Bhadti, K. S. Jain, I. S. Rathod, R. K. Goyal, T. P. Gandhi, R. B. Patel, and S. R. Naik, Arzneim.-Forsch., 40, 567 (1990).Google Scholar
  5. 5.
    U. S. Pathak, S. Singh, and J. Padh, Indian J. Chem., B30, 618 (1991).Google Scholar
  6. 6.
    V. Darias, S. S. Abdallah, M. L. Tello, L. D. Delgado, and S. Vega, Arch. Pharm., 327, 779 (1994).CrossRefGoogle Scholar
  7. 7.
    O. A. El-Sayed, B. A. Al-Bassam, and M. E. Hussein, Arch. Pharm., 335, 403 (2002).CrossRefGoogle Scholar
  8. 8.
    L. Cordeu, E. Cubedo, E. Bandres, A. Rebollo, X. Saenz, and H. Chozes, M. Victoria Dominquez, M. Echeverria, B. Mendivil, C. Sanmartin, J. A. Palop, M. Font, and J. Garcia-Foncillas, J. Bioorg. Med. Chem., 15, 1659 (2007).CrossRefGoogle Scholar
  9. 9.
    R. A. Newberry and B. J. Bushell, US 3979402; Chem. Abstr., 86, 29795 (1977).Google Scholar
  10. 10.
    D. Carclunescu, A. D. Lopez, E. G. Iriarte, G. Tina, G. Gomez, R. Tena, and C. Ghirvu, An. R. Acad. Nac. Farm., 51, 241 (1985).Google Scholar
  11. 11.
    M. Yu. Gavrilov, I. G. Mardanova, V. E. Kolla, and M. E. Konshin, Pharm. Chem. J., 22, 554 (1988).CrossRefGoogle Scholar
  12. 12.
    J. Quiroga, B. Insuasty, A. Sanchez, M. Nogueras, and H. Meier, J. Heterocycl. Chem., 29, 1045 (1992).CrossRefGoogle Scholar
  13. 13.
    H. Ulrich, J. N. Tilley, and A. A. Sayigh, J. Org. Chem., 27, 2160 (1962).CrossRefGoogle Scholar
  14. 14.
    F. Desarlo and G. Renzi, Tetrahedron., 22, 2995 (1966).CrossRefGoogle Scholar
  15. 15.
    J. Woodman, P. M. Stonebraker, and L. Weiler, J. Am. Chem. Soc., 98, 6036 (1967).CrossRefGoogle Scholar
  16. 16.
    J. Woodman, W. H. Campbell, and E. F. Derose, Heterocycles, 7, 247 (1977).CrossRefGoogle Scholar
  17. 17.
    R. Bossio, S. Marcaccini, R. Pepino, and P. Paoli, J. Heterocycl. Chem., 30, 33 (1993).CrossRefGoogle Scholar
  18. 18.
    C. Donati, W. K. Janowski, R. H. Prager, M. R. Taylor, and M. Vilkins, Aust. J. Chem., 42, 2161 (1989).CrossRefGoogle Scholar
  19. 19.
    M. M. Baradarani, A. Clark, and R. H. Prager, Aust. J. Chem., 51, 492 (1998).CrossRefGoogle Scholar
  20. 20.
    G. Doleschall, Tetrahedron Lett., 29, 6339 (1988).CrossRefGoogle Scholar
  21. 21.
    L. Claisen and E. Haase, Liebigs Ann. Chem., 297, 81 (1897).Google Scholar
  22. 22.
    O. Meth-Cohn, B. Narine, and B. Tarnowski, J. Chem. Soc., Perkin Trans. 1, 1520 (1981).Google Scholar
  23. 23.
    A. Afghan, M. M. Baradarani, and J. A. Joule, ARKIVOC, ii, 20 (2009).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceUrmia UniversityUrmiaIran

Personalised recommendations