Advertisement

Chemistry of Heterocyclic Compounds

, Volume 47, Issue 1, pp 82–89 | Cite as

Synthesis of derivatives of 2-aminoimidazole and 2-iminoimidazolidine by cyclization of 1-aryl-2-(4,6-dimethylpyrimidin-2-yl)guanidines with α-bromocarbonyl compounds

  • A. S. ShestakovEmail author
  • I. S. Bushmarinov
  • O. E. Sidorenko
  • Kh. S. Shikhaliev
  • M. Yu. Antipin
Article

Cyclization of 1-aryl-2-(4,6-dimethylpyrimidin-2-yl)guanidines with α-bromoacetophenone and ethyl bromoacetate gave derivatives of 1,4-diphenyl-1H-imidazole-2-amine and 2-amino-1-phenylimidazolidin- 4-one respectively. The mechanism of the reaction was determined on the basis of quantum-chemical calculations, NOESY NMR spectroscopy, and X-ray crystallography.

Keywords

2-aminoimidazole 1-aryl-2-(4,6-dimethylpyrimidin-2-yl)guanidines 2-iminoimidazoidine phenacyl bromide ethyl bromoacetate ab initio calculations NOESY X-ray crystallography cyclization 

References

  1. 1.
    H. Gross, S. Kehraus, G. M. Koenig, G. Woerheide, and A. D. Wright, J. Nat. Prod., 65, 1190 (2002).CrossRefGoogle Scholar
  2. 2.
    W. Hassan, R. Edrada, R. Ebel, V. Wray, A. Berg, R. Van Soest, S. Wiryowidagdo, and P. Proksch, J. Nat. Prod., 67, 817 (2004).CrossRefGoogle Scholar
  3. 3.
    W. J. Pitts, J. Wityak, J. M. Smallheer, A. E. Tobin, J. W. Jetter, J. S. Buynitsky, P. P. Harlow, K. A. Solomon, M. H. Corjay, S. A. Mousa, R. R. Wexler, and P. K. Jadhav, J. Med. Chem., 43, 27 (2000).CrossRefGoogle Scholar
  4. 4.
    D. G. Batt, J. J. Petraitis, G. C. Houghton, D. P. Modi, G. A. Cain, M. H. Corjay, S. A. Mousa, P. J. Bouchard, M. S. Forsythe, P. P. Harlow, F. A. Barbera, S. M. Spitz, R. R. Wexler, and P. K. Jadhav, J. Med. Chem., 43, 41 (2000).CrossRefGoogle Scholar
  5. 5.
    T. Pyl, H. Lahmer, and H. Beyer, Chem. Ber., 94, 3217 (1961).CrossRefGoogle Scholar
  6. 6.
    A. V. Ivashchenko, V. T. Lazareva, E. K. Prudnikova, S. P. Ivashchenko, and V. G. Rumyantsev, Khim. Geterotsikl. Soed., 236 (1982). [Chem. Heterocycl. Comp., 18, 185 (1982)].CrossRefGoogle Scholar
  7. 7.
    T. L. Little and S. E. Webber, J. Org. Chem., 59, 7299 (1994).CrossRefGoogle Scholar
  8. 8.
    Ch. H. Soh, W. K. Chui, and Y. Lam, J. Comb. Chem., 10, 118 (2008).CrossRefGoogle Scholar
  9. 9.
    D. S. Ermolat’ev, E. V. Babaev, and E. V. Van den Eycken, Org. Lett., 8, 5781 (2006).CrossRefGoogle Scholar
  10. 10.
    D. S. Ermolat’ev, and E. V. Van den Eycken, J. Org. Chem., 73, 6691 (2008).CrossRefGoogle Scholar
  11. 11.
    S. Birtwell. J. Chem. Soc., 1725 (1953).Google Scholar
  12. 12.
    Kh. S. Shickaliev, D. V. Kryl’skii, A. S. Shestakov, and A. V. Falaleev, Zh. Obshch. Khim., 73, 1216 (2003).Google Scholar
  13. 13.
    M. Furukawa, Y. Fujino, and S. Hayashi, Chem. Pharm. Bull., 19, 2284 (1971).Google Scholar
  14. 14.
    T. Urbanski, B. Serafin, and J. Zylowski, J. Med. Chem., 10, 521 (1967).CrossRefGoogle Scholar
  15. 15.
    M. J. Frisch, G. W. Trucks, H. B. Schegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, Jr., J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cros, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Paghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komafomi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Faanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision C. 02, Gaussian Inc., Wallingford, CT, 2004.Google Scholar
  16. 16.
    F. Johnson and W. A. Nasutavicus, J. Heterocycl. Chem., 2, 26 (1965).CrossRefGoogle Scholar
  17. 17.
    V. A. Chuiguk and A. G. Maidannik, Khim. Geterotsikl. Soed., 1695 (1980).Google Scholar
  18. 18.
    R. J. Sundberg, B. J. Dahlhausen, G. Manikumar, B. Mavunkel, A. Biswas, V. Srinivasan, F. Jr. King, and H. Waid, J. Heterocycl. Chem.,25, 129 (1988).CrossRefGoogle Scholar
  19. 19.
    T. Tsuchiya, M. Kato, and H. Sashida, Chem. Pharm. Bull.,32, 4666 (1984).Google Scholar
  20. 20.
    N. Abe, T. Nishiwaki, and H. Yamamoto, Chem. Lett., 805 (1982).Google Scholar
  21. 21.
    N. Abe, T. Nishiwaki, H. Yamamoto, and N. Kunishige, Bull. Chem. Soc. Jpn., 56, 3703 (1983).CrossRefGoogle Scholar
  22. 22.
    S. M. Simonov and V. A. Anisimova, Khim. Geterotsikl. Soed., 1102 (1968). [Chem. Heterocycl. Comp., 4, 801 (1968)].CrossRefGoogle Scholar
  23. 23.
    G. Sheldrick, Acta Crystallogr., A64, 112 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • A. S. Shestakov
    • 1
    Email author
  • I. S. Bushmarinov
    • 2
  • O. E. Sidorenko
    • 1
  • Kh. S. Shikhaliev
    • 1
  • M. Yu. Antipin
    • 2
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.A. N. Nesmeyanov Institute of Organoelement CompoundsMoscowRussia

Personalised recommendations