Advertisement

Regioselective N-arylation of nitroazoles. Determination of the structure of N-arylnitro-azoles on the basis of NMR spectroscopic data and quantum-chemical calculations

  • V. A. ChertkovEmail author
  • A. K. Shestakova
  • D. V. Davydov
Article

The N-arylation of a series of nitroazoles has been studied with the aid of diaryliodonium salts in the presence of CuI under the action of microwave radiation. It was found that alkylation proceeds regioselectively in each actual case with the formation of one of two possible isomers. The correct structure of the N-arylation products was established on the basis of NMR spectroscopy.

Keywords

diaryliodonium salts CuI nitroazoles regioselective N-arylation two-dimensional NMR catalysis quantum-chemical calculations microwave irradiation high resolution NMR NOE factors 

References

  1. 1.
    J. H. Boyer, Nitroazoles, Wiley-VCH, Hamburg (1987), Chaps. 1–5 (1987).Google Scholar
  2. 2.
    N. G. Huilgol, C. K. K. Nair, and V. T. Kagiya, in: Radiation Sensitizers: A Contemporary Audit, Narosa, Mumbai (2001), Chaps. 1–3.Google Scholar
  3. 3.
    J. P. Agrawal and R. Hodgson, in: Organic Chemistry of Explosives, Wiley, Chichester (2007), Chaps 1–6 (2007).Google Scholar
  4. 4.
    M. J. Graneto, US Patent 5521207; Chem. Abs., 125, 114612 (1996).Google Scholar
  5. 5.
    K. Walczak, A. Gondela, and J. Suwinski, Eur. J. Med. Chem., 39, 849 (2004).CrossRefGoogle Scholar
  6. 6.
    R. Jedrysiak, M. Sawicki, P. Wagner, and J. Suwinski, ARKIVOC, vi, 103 (2007).Google Scholar
  7. 7.
    M. R. Grimmett, K. H. R. Lim, and R. T. Weavers, Aust. J. Chem., 32, 2203 (1979).CrossRefGoogle Scholar
  8. 8.
    V. A. Chauzov, V. Z. Parchinskii, E. V. Sinel’shchikova, A. V. Burasov, B. I. Ugrak, N. N. Parfenov, and V. A. Petrosyan, Izv. Akad. Nauk, Ser. Khim., 1402 (2002).Google Scholar
  9. 9.
    A. R. Muci and S. L. Buchwald, Top. Curr. Chem., 219, 131 (2002).CrossRefGoogle Scholar
  10. 10.
    S. V. Ley and A. W. Thomas, Angew. Chem. Intern. Edit. Eng., 42, 5400 (2003).CrossRefGoogle Scholar
  11. 11.
    P. Beletskaya and A. V. Cheprakov, Coord. Chem. Rev., 248, 2337 (2004).CrossRefGoogle Scholar
  12. 12.
    L. Wang and Z.-C. Chen, J. Chem. Res. (S), 367 (2000).Google Scholar
  13. 13.
    I. P. Beletskaya, D. V. Davydov, and M. Moreno-Manas, Tetrahedron Lett., 39, 5621 (1998).CrossRefGoogle Scholar
  14. 14.
    D. V. Davydov, I. P. Beletskaya, and M. S. Gorovoy, Tetrahedron Lett., 43, 6221 (2002).CrossRefGoogle Scholar
  15. 15.
    D. V. Davydov, I. P. Beletskaya, B. B. Semenov, and Y. A. Smushkevich, Tetrahedron Lett., 43, 6217 (2002).CrossRefGoogle Scholar
  16. 16.
    J. Catalan, J. L. M. Abboud, and J. Elguero, Adv. Heterocycl. Chem., 41, 187 (1987).CrossRefGoogle Scholar
  17. 17.
    V. A. Chertkov and M. A. Yurovskaya, Khim. Geterotsikl. Soedin., 899 (1993). [Chem. Heterocycl. Comp., 29, 762 (1993)].Google Scholar
  18. 18.
    V. A. Chertkov and N. M. Sergeyev, J. Magn. Reson., 21, 159 (1976).Google Scholar
  19. 19.
    L. Ernst, V. Wray, V. A. Chertkov, and N. M. Sergeyev, J. Magn. Reson., 25, 123 (1977).Google Scholar
  20. 20.
    H. Mo and T. C. Pochapsky, Prog. Nucl. Magn. Reson. Spectrosc., 30, 1 (1997).CrossRefGoogle Scholar
  21. 21.
    M. A. Yurovskaya, V. A. Chertkov, A. Z. Afanas'ev, F. V. Ienkina, and Yu. G. Bundel', Khim. Geterotsikl. Soedin., 509 (1985). [Chem. Heterocycl. Comp., 21, 424 (1985)].Google Scholar
  22. 22.
    M. A. Yurovskaya, A. Z. Afanas’'ev, V. A. Chertkov, A. M. Gizatullina, and Yu. G. Bundel’, Khim. Geterotsikl. Soedin., 1625 (1987). [Chem. Heterocycl. Comp., 23, 1305 (1987)].Google Scholar
  23. 23.
    M. A. Yurovskaya, A. Z. Afanas'ev, V. A. Chertkov, and Yu. G. Bundel', Khim. Geterotsikl. Soedin., 1213 (1988). [Chem. Heterocycl. Comp., 24, 1000 (1988)].Google Scholar
  24. 24.
    V. A. Chertkov, Yu. K. Grishin, and N. M. Sergeyev, J. Magn. Reson., 24, 275 (1976).Google Scholar
  25. 25.
    T. Bundgaard, H. J. Jakobsen, and E. J. Rahkamaa, J. Magn. Reson., 19, 345 (1975).Google Scholar
  26. 26.
    M. Hansen, R. S. Hansen, and H. J. Jakobsen, J. Magn. Reson., 13, 386 (1974).Google Scholar
  27. 27.
    V. A. Chertkov and Yu. K. Grishin, Zh. Struk. Khim., 18, 616 (1977).Google Scholar
  28. 28.
    O. V. Dorofeeva, A. V. Ferenets, N. M. Karasev, L. V. Vilkov, and H. Oberhammer, J. Phys. Chem., A, 112, 5002 (2008).CrossRefGoogle Scholar
  29. 29.
    N. M. Sergeev and V. A. Chertkov, Dokl. Akad. Nauk, 286, 1186 (1986).Google Scholar
  30. 30.
    W. R. Croasmun and R. M. K. Carlson, Two-dimensional NMR Spectroscopy. Applications for Chemists and Biochemists, Methods in Stereochemical Analysis, Vol. 9, Verlag Chemie, Weinheim (1987).Google Scholar
  31. 31.
    T. D. W. Claridge, High-Resolution NMR Techniques in Organic Chemistry, 2nd ed., Elsevier, Oxford (2008).Google Scholar
  32. 32.
    J. A. Jones, Prog. Nucl. Magn. Reson. Spectrosc., 38, 325 (2001).CrossRefGoogle Scholar
  33. 33.
    T. A. Keith and R. F. W. Bader, Chem. Phys. Lett., 210, 223 (1993).CrossRefGoogle Scholar
  34. 34.
    J. R. Cheeseman, M. J. Frisch, G. W. Trucks, and T. A. Keith, J. Chem. Phys., 104, 5497 (1996).CrossRefGoogle Scholar
  35. 35.
    A. K. Shestakova, A. V. Makarkina, O. V. Smirnova, M. M. Shtern, and V. A. Chertkov, Izv. Akad. Nauk, Ser. Khim., 1309 (2006).Google Scholar
  36. 36.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09W, Revision A.1, Gaussian Inc., Wallingford (2009).Google Scholar
  37. 37.
    E. Salwinska and J. Suwinski, Pol. J. Chem., 64, 813 (1990).Google Scholar
  38. 38.
    J. Suwiski, W. Pawlus, E. Salwiska, and K. Swierczek, Heterocycles, 37, 1511 (1994).CrossRefGoogle Scholar
  39. 39.
    D. Dal Monte Casoni, Gazz. Chim. Ital., 89, 1539 (1959).Google Scholar
  40. 40.
    M. R. Grimmett, S. R. Hartshorn, K. Schofield, and J. B. Weston, J. Chem. Soc., Perkin Trans. 2, 1654 (1972).Google Scholar
  41. 41.
    G. S. Predvoditeleva, T. V. Kartseva, and M. N. Shchukina, Khim.-farm. Zh., 8, 525 (1974).Google Scholar
  42. 42.
    V. A. Petrosyan, M. E. Niyazymbetov, M. S. Pevzner, and B. I. Ugrak, Izv. Akad. Nauk SSSR. Ser. Khim., 1643 (1988).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • V. A. Chertkov
    • 1
    Email author
  • A. K. Shestakova
    • 2
  • D. V. Davydov
    • 1
  1. 1.Moscow M. V. Lomonosov State University, Faculty of ChemistryMoscowRussia
  2. 2.Russian Federation State Science CenterState Research Institute of Chemistry and Technology of Organoelement CompoundsMoscowRussia

Personalised recommendations