Advertisement

Synthesis and antibacterial activity of some novel pyrazolopyridine derivatives

  • N. Panda
  • S. Karmakar
  • A. K. Jena
Article

Eight pyrazolo[3,4-b]pyridine derivatives have been synthesized by Friedländer condensation of 5-aminopyrazole-4-carbaldehyde with active methylene compounds in basic medium. These compounds have been screened for their antibacterial activity against two Gram-negative and two Gram-positive bacterium. Pyrazolopyridines having the carboxamide group at the 5-position showed moderate to good activity against P. aeruginosa, E. coli, S. pneumoniae, and B. cereus.

Keywords

heterocycles pyrazolo[3,4-b]pyridines antimicrobial activity disc diffusion method Friedländer condensation 

References

  1. 1.
    S. J. Brickner, D. K. Hutchinson, M. R. Barbachyn, P. R. Manninen, D. A. Ulanowicz, S. A. Garmon, K. C. Grega, S. K. Hendges, D. S. Toops, C. W. Ford, and G. E. Zurenko., J. Med. Chem., 39, 673 (1996).CrossRefGoogle Scholar
  2. 2.
    M. J. Genin, D. A. Allwine, D. J. Anderson, M. R. Barbachyn, D. E. Emmert, S. A. Garmon, D. R. Graber, K. C. Grega, J. B. Hester, D. K. Hutchinson, J. Morris, R. J. Reischer, C. W. Ford, G. E. Zurenko, J. C. Hamel, R. D. Schaadt, D. Stapert, and B. H. Yagi, J. Med. Chem., 43, 953 (2000).CrossRefGoogle Scholar
  3. 3.
    W. Stadlbauer, in: R. Neier (editor), Science of Synthesis: Houben-Weyl Methods of Molecular Transformation, Thieme, Stuttgart, New York, Vol. 12, p. 227.Google Scholar
  4. 4.
    M. N. Jachak, A. B. Avhale, C. D. Tantak, R. B. Toche, C. Reidlinger, and W. Stadlbauer, J. Heterocycl. Chem., 42, 1311 (2005).CrossRefGoogle Scholar
  5. 5.
    J. B. Patel, J. B. Malick, A. I. Salama, and M. E. Goldberg, Pharmacol. Biochem. Behav., 23, 675 (1985).CrossRefGoogle Scholar
  6. 6.
    L. Bettinetti, K. Schlotter, H. Hübner, and P. Gmeiner, J. Med. Chem., 45, 4594 (2002).CrossRefGoogle Scholar
  7. 7.
    S. Löber, H. Hübner, W. Utz, and P. Gmeiner, J. Med. Chem., 44, 2691 (2001).CrossRefGoogle Scholar
  8. 8.
    S. Kuroda, A. Akahane, H. Itani, S. Nishimura, K. Durkin, Y. Tenda, and K. Sakane, Bioorg. Med. Chem., 8, 55 (2000).CrossRefGoogle Scholar
  9. 9.
    T. Tuccinardi, S. Schenone, F. Bondavalli, C. Brullo, O. Bruno, L. Mosti, A. T. Zizzari, C. Tintori, F. Manetti, O. Ciampi, M. L. Trincavelli, C. Martini, A. Martinelli, and M. Botta, ChemMedChem., 3, 898 (2008).CrossRefGoogle Scholar
  10. 10.
    B. A. Johns, K. S. Gudmundsson, E. M. Turner, S. H. Allen, V. A. Samano, J. A. Ray, G. A. Freeman, F. L. Boyd, C. J. Sexton, D. W. Selleseth, K. L. Creech, and K. R. Moniri, Bioorg. Med. Chem., 13, 2397 (2005).CrossRefGoogle Scholar
  11. 11.
    P. K. Sharma, K. Singh, S. Kumar, P. Kumar, S. N. Dhawan, S. Lal, H. Ulbrich, and G. Dannhardt, Med. Chem. Res., DOI  10.1007/s00044-010-9312-7.
  12. 12.
    T. Irikura, K. Nishino, S. Suzue, and T. Ikeda, Eur. Pat. Appl. EP0118916. ep.espacenet.comGoogle Scholar
  13. 13.
    B. M. Lynch, M. A. Khan, H. C. Teo, and F. Pedrotti, Can. J. Chem., 66, 420 (1988).CrossRefGoogle Scholar
  14. 14.
    G. Lavecchia, S. Berteina-Raboin, and G. Guillaumet, Tetrahedron Lett., 45, 6633 (2004).CrossRefGoogle Scholar
  15. 15.
    R. V. Fucini, E. J. Hanan, M. J. Romanowski, R. A. Elling, W. Lew, K. J. Barr, J. Zhu, J. C. Yoburn, Y. Liu, B. T. Fahr, J. Fan, Y. Lu, P. Pham, I. C. Choong, E. C. Van der Porten, M. Bui, H. E. Purkey, M. J. Evanchik, and W. Yang, Bioorg. Med. Chem. Lett., 18, 5648 (2008).CrossRefGoogle Scholar
  16. 16.
    T. J. Tucker, J. T. Sisko, R. M. Tynebor, T. M. Williams, P. J. Felock, J. A. Flynn, M.-T. Lai, Y. Liang, G. McGaughey, M. Liu, M. Miller, G. Moyer, V. Munshi, R. Perlow-Poehnelt, S. Prasad, J. C. Reid, R. Sanchez, M. Torrent, J. P. Vacca, B.-L. Wan, and Y. Yan, J. Med. Chem., 51 , 6503 (2008).CrossRefGoogle Scholar
  17. 17.
    Y.-L. Zhong, M. G. Lindale, and N. Yasuda, Tetrahedron Lett., 50, 2293 (2009).CrossRefGoogle Scholar
  18. 18.
    N. A. Hamdy and A. M. Gamal-Eldeen, Eur. J. Med. Chem., 44, 4547 (2009).CrossRefGoogle Scholar
  19. 19.
    M. Chioua, A. Samadi, E. Soriano, O. Lozach, L. Meijer, and J. Marco-Contelles, Bioorg. Med. Chem. Lett., 19, 4566 (2009).CrossRefGoogle Scholar
  20. 20.
    Díaz-Ortiz, A. de la Hoz, and F. Langa, Green Chem., 2, 165 (2000).CrossRefGoogle Scholar
  21. 21.
    M. Suzuki, H. Iwasaki, Y. Fujikawa, M. Sakashita, M. Kitahara, and R. Sakoda, Bioorg. Med. Chem. Lett., 11, 1285 (2001).CrossRefGoogle Scholar
  22. 22.
    J. Quiroga, B. Insuasty, A. Hormaza, D. Gamenara, L. Domínguez, and J. Saldaňa, J. Heterocycl. Chem., 36, 11 (1999).CrossRefGoogle Scholar
  23. 23.
    X. Zou, S. Tu, F. Shi, J. Xu, ARKIVOC, ii, 130 (2006).Google Scholar
  24. 24.
    L. R. S. Dias, M. B. Santos, S. de Albuquerque, H. C. Castro, A. M. T. de Souza, A. C. C. Freitas, M. A. V. DiVaio, L. M. Cabral, and C. R. Rodrigues, Bioorg. Med. Chem., 15, 211 (2007).CrossRefGoogle Scholar
  25. 25.
    C. Liu, Z. Li, L. Zhao, and L. Shen, ARKIVOC, ii, 258 (2009).Google Scholar
  26. 26.
    S. Lee and S. B. Park, Org. Lett., 11, 5214 ( 2009).CrossRefGoogle Scholar
  27. 27.
    X. Fan, X. Wang, X. Zhang, X. Li, and G. Qu, Heteroatom Chem., 19, 694 (2008).CrossRefGoogle Scholar
  28. 28.
    D.-Q. Shi, J.-W. Shi, H. Yao, H. Jiang, and X.-S. Wang, J. Chin. Chem. Soc., 54, 1341 (2007).Google Scholar
  29. 29.
    J. Häufel and E. Breitmaier, Angew. Chem., 85, 959 (1973).CrossRefGoogle Scholar
  30. 30.
    J. Häufel and E. Breitmaier, Angew. Chem., 86, 671 (1974).CrossRefGoogle Scholar
  31. 31.
    A. Kumari, Thesis M. Sc., Rourkela, 2009.Google Scholar
  32. 32.
    J. Bartulin, J. Belmar, and G. Leon, Bol. Soc. Chil. Quím., 37, 13 (1992).Google Scholar
  33. 33.
    E. J. Barreiro, C. A. Camara, H. Verli, L. Brazil-Más, N. G. Castro, W. M. Cintra, Y. Aracava, C. R. Rodrigues, and C. A. M. Fraga, J. Med. Chem., 46, 1144 (2003).CrossRefGoogle Scholar
  34. 34.
    C.-C. Cheng, S.-Y. Yan, in: W. C. Dauben (editor), Organic Reactions, J. Wiley & Sons, New York, 1982, Vol. 28, p. 37.Google Scholar
  35. 35.
    P. Mundy and M. G. Ellerd, Name Reactions and Reagents in Organic Synthesis, J. Wiley & Sons, New York, 1988, p. 86.Google Scholar
  36. 36.
    A. Hassner and C. Stumer, in: P. D. Magnus (editor), Organic Synthesis Based on Named and Unnamed Reactions (Tetrahedron Organic Chemistry Series), J. E. Baldwin, Elsevier Sci., Oxford, New York, Tokyo, 1994, Vol. 11, p. 132.Google Scholar
  37. 37.
    G. Karthikeyan and P. T. Perumal, J. Heterocyclic Chem., 41, 1039 (2004).CrossRefGoogle Scholar
  38. 38.
    V. K. Ahluwalia and B. Goyal, Synth. Commun., 26, 1341 (1996).CrossRefGoogle Scholar
  39. 39.
    V. K. Ahluwalia and A. Dahiya, Indian J. Chem., 35B, 1208 (1996).Google Scholar
  40. 40.
    V. K. Ahluwalia, A. Dahiya, and V. K. Garg, Indian J. Chem., 36B, 88 (1997).Google Scholar
  41. 41.
    T. I. El-Emary, J. Chin. Chem. Soc., 46, 585 (1999).Google Scholar
  42. 42.
    M. Hussein and T. I. El-Emary, J. Chem. Res. (S), 20 (1998).Google Scholar
  43. 43.
    A. Zheng, W. Zhang, and J. Pan, Synth. Commun., 36, 1549 (2006).CrossRefGoogle Scholar
  44. 44.
    T. Premkumar and S. Govindarajan, World J. Microbiol. Biotechnol., 21, 479 (2005).CrossRefGoogle Scholar
  45. 45.
    Cremer, Antibiotic Sensitivity and Assay Tests, Butterworth, London, 4th ed., 1980, p. 521.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.Department of ChemistryNational Institute of TechnologyRourkelaIndia

Personalised recommendations