Advertisement

Chemistry of Heterocyclic Compounds

, Volume 46, Issue 9, pp 1122–1126 | Cite as

Palladium-catalyzed reaction of methyl 5-amino-4-chloro-2-methylthiopyrrolo[2,3-d]-pyrimidine-6-carboxylate with arylboronic acids. Synthesis of 1,3,4,6-tetraazadibenzo[cd,f]-azulene heterocyclic system

  • J. Dodonova
  • I. Uogintaite
  • V. Masevicius
  • S. TumkeviciusEmail author
Article

Densely substituted methyl 5-amino-4-aryl-7-methyl-2-methylthio-7H-pyrrolo[2,3-d]pyrimidine-6-carboxy- lates were synthesized by the palladium-catalyzed cross-coupling reaction of methyl 5-amino-4-chloro-7-methyl-2-methylthio-7H-pyrrolo[2,3-d]pyrimidine-6-carboxylate with arylboronic acids using Pd(OAc)2/dicyclohexyl(2-biphenyl)phosphine/K3PO4 as a catalyst system. Reaction of methyl 5-amino-4-chloro-7-methyl-2-methylthio-7H-pyrrolo[2,3-d]pyrimidine-6-carboxylate with 2-formylphenyl- boronic acid led to a novel heterocyclic system – 1,3,4,6-tetraazadibenzo[cd,f]azulene.

Keywords

arylboronic acids pyrrolo[2,3-d]pyrimidines 1,3,4,6-tetraazadibenzo[cd,f]azulene palladium catalysis Suzuki–Miyaura reaction 

References

  1. 1.
    M. Hocek, A. Holy, I. Votruba, and H. Dvorakova, J. Med. Chem., 43, 1817 (2000).CrossRefGoogle Scholar
  2. 2.
    M. Hocek, P. Naus, R. Pohl, I. Votruba, P. A. Furman, P. M. Tharnish, and M. J. Ott, J. Med. Chem., 48, 5869 (2005).CrossRefGoogle Scholar
  3. 3.
    L.-L. Gundersen, J. Nissen-Meyer, and B. Spilsberg, J. Med. Chem., 48, 1383 (2005).Google Scholar
  4. 4.
    A. K. Bakkestuen, L.-L. Gundersen, and B. T. Utenova, J. Med. Chem., 48, 2710 (2005).CrossRefGoogle Scholar
  5. 5.
    J. B. Wiesner, B. G. Ugarkar, A. J. Castellino, J. Barankiewicz, D. P. Dumas, H. E. Gruber, A. C. Foster, and M. D. Erion, J. Pharm. Exp. Ther., 289, 1669 (1999).Google Scholar
  6. 6.
    O. Irie, T. Ehara, A. Iwasaki, F. Yokokawa, J. Sasaki, H. Hirao, T. Kanazawa, N. Teno, M. Horiuchi, I. Umemura, H. Gunji, K. Masuya, Y. Hitomi, G. Iwasaki, K. Nonomura, K. Tanabe, H. Fukaya, T. Kasoka, C. R. Snell, and A. Hallett, Bioorg. Med. Chem. Lett., 18, 3959 (2008).CrossRefGoogle Scholar
  7. 7.
    C. J. Calderwood, D. N. Johnston, R. Munschauer, and P. Rafferty, Bioorg. Med. Chem. Lett., 12, 1683 (2002).CrossRefGoogle Scholar
  8. 8.
    E. Altmann, M. Missbach, J. Green, M. Susa, H. Wagenknecht, and L. Widler, Bioorg. Med. Chem. Lett., 11, 853 (2001).CrossRefGoogle Scholar
  9. 9.
    M. S. Mohamed, R. A. El-Domany, and R. H. A. El-Hameed, Acta Pharm., 59, 145 (2009).CrossRefGoogle Scholar
  10. 10.
    P. R. Sebahar, J. A. Willardsen, and M. B. Anderson, Curr. Bioact. Comp., 5, 79 (2009).CrossRefGoogle Scholar
  11. 11.
    C. L. Gibson, J. K. Huggan, A. Kennedy, L. Kiefer, J. K. Lee, C. J. Suckling, C. Clements, A. L. Harvey, W. N. Hunter, and L. B. Tulloch, Org. Biomol. Chem., 7, 1829 (2009).CrossRefGoogle Scholar
  12. 12.
    N. Miyaura, in: A. Meijere and F. Diederich (editors), Metal-Catalysed Cross-Coupling Reactions, Wiley-VCH, Weinheim, 2004, vol. 1, p. 41.Google Scholar
  13. 13.
    E. J.-G. Anctil, V. Snieckus, in: A. Meijere and F. Diederich, (editors), Metal-Catalysed Cross-Coupling Reactions, Wiley-VCH, Weinheim, 2004, vol. 2, p. 761.Google Scholar
  14. 14.
    J. K. Li and G. W. Gribble, Palladium in Heterocyclic Chemistry, Pergamon, Oxford, 2000, p. 375.Google Scholar
  15. 15.
    N. Miyaura and A. Suzuki, Chem. Rev., 95, 2457 (1995).CrossRefGoogle Scholar
  16. 16.
    A. Suzuki, J. Organomet. Chem., 576, 147 (1999).CrossRefGoogle Scholar
  17. 17.
    A. R. Gholap, K. S. Toti, F. Shirazi, M. V. Deshpande, and K. V. Srinivasan, Tetrahedron, 64, 10214 (2008).CrossRefGoogle Scholar
  18. 18.
    S. Kotha, K. Lahiri, and D. Kashinath, Tetrahedron, 58, 9633 (2002).CrossRefGoogle Scholar
  19. 19.
    J. Li, X. Zhang, and Y. Xie, Synlett, 1897 (2005).Google Scholar
  20. 20.
    F. Bellina, A. Carpita, and R. Rossi, Synthesis, 2419 (2004).Google Scholar
  21. 21.
    S. Schroter, C. Stock, and T. Bach, Tetrahedron, 61, 2245 (2005).CrossRefGoogle Scholar
  22. 22.
    I. J. S. Fairlamb, Chem. Soc. Rev., 36, 1036 (2007).CrossRefGoogle Scholar
  23. 23.
    T. Sakamoto, Y. Kondo, S. Sato, and H. Yamanaka, Tetrahedron Lett., 35, 2919 (1994).CrossRefGoogle Scholar
  24. 24.
    T. Y. H. Wu, P. G. Schultz, and S. Ding, Org. Lett., 5, 3587 (2003).CrossRefGoogle Scholar
  25. 25.
    E. D. Edstrom and Y. Wei, J. Org. Chem., 58, 403 (1993).CrossRefGoogle Scholar
  26. 26.
    M. Klecka, R. Pohl, B. Klepetarova, and M. Hocek, Org. Biomol. Chem., 7, 866 (2009).CrossRefGoogle Scholar
  27. 27.
    J. H. Harvey, B. K. Butler, and D. Trauner, Tetrahedron Lett., 48, 1661 (2007).CrossRefGoogle Scholar
  28. 28.
    P. Naus, R. Pohl, I. Votruba, P. Dzubak, M. Haiduch, R. Ameral, G. Birkus, T. Wang, A. S. Ray, R. Mackman, T. Cihlar, and M. Hocek, J. Med. Chem., 53, 460 (2010).CrossRefGoogle Scholar
  29. 29.
    S. Tumkevicius, J. Dodonova, K. Kazlauskas, V. Masevicius, L. Skardziute, and S. Jursenas, Tetrahedron Lett., 51, 3902 (2010).CrossRefGoogle Scholar
  30. 30.
    I. Susvilo, A. Brukstus, and S. Tumkevicius, Synlett, 1151 (2003).Google Scholar
  31. 31.
    S. Tumkevicius and V. Masevicius, Synlett, 2327 (2004).Google Scholar
  32. 32.
    S. Tumkevicius, Z. Sarakauskaite, and V. Masevicius, Synthesis, 1377 (2003).Google Scholar
  33. 33.
    S. Tumkevicius and V. Masevicius, Synthesis, 3815 (2007).Google Scholar
  34. 34.
    S. Tumkevicius, J. Dodonova, I. Baskirova, and A. Voitechovicius, J. Heterocycl. Chem., 46, 960 (2009).CrossRefGoogle Scholar
  35. 35.
    J. Sudzius and S. Tumkevicius, Lett. Org. Chem., 6, 526 (2009).CrossRefGoogle Scholar
  36. 36.
    T. Itoh and T. Mase, Tetrahedron Lett., 46, 3573 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • J. Dodonova
    • 1
  • I. Uogintaite
    • 1
  • V. Masevicius
    • 1
  • S. Tumkevicius
    • 1
    Email author
  1. 1.Vilnius University, Department of Organic ChemistryVilniusLithuania

Personalised recommendations