4-hydroxy-2-quinolones 165*. 1-R-4-hydroxy-2-oxo-1,2-dihydro-quinoline-3-carbaldehydes and their thiosemicarbazones. Synthesis, structure, and biological properties

  • I. V. Ukrainets
  • Liu Yangyang
  • A. A. Tkach
  • O. V. Gorokhova
  • A. V. Turov

Two variants are discussed of the synthesis of 1-R-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylic acid β-N-tosylhydrazides which undergo a McFayden-Stevens reaction to give 1-R-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carbaldehydes in high yields. It was shown that the thiosemicarbazones prepared from them exist in the solid state exclusively in the syn-form while in solution a hydrazone ↔ enhydrazine tautomerism is observed. The results of a study of the antitubercular activity of the synthesized compounds are reported.


4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carbaldehydes thiosemicarbazones isomeri-zation antitubercular activity X-ray structural analysis 


  1. 1.
    S. V. Shishkina, O. V. Shishkin, I. V. Ukrainets, N. L. Bereznyakova, and A. A. Davidenko, Acta Crystallogr., E64, o1031 (2008).Google Scholar
  2. 2.
    D. S. Kalinowski, P. C. Sharpe, P. V. Bernhardt, and D. R. Richardson, J. Med. Chem., 50, 6212 (2007).CrossRefGoogle Scholar
  3. 3.
    K. Husain, M. Abid, and A. Azam, Eur. J. Med. Chem., 42, 1300 (2007).CrossRefGoogle Scholar
  4. 4.
    C. Biot, B. Pradines, M. H. Sergeant, J. Gut, P. J. Rosenthal, and K. Chibale, Bioorg. Med. Chem. Lett., 17, 6434 (2007).CrossRefGoogle Scholar
  5. 5.
    T. Varadinova, D. Kovala-Demertzi, M. Rupelieva, M. Demertzis, and P. Genova, Acta Virol., 45, 87 (2001).Google Scholar
  6. 6.
    M. J. Mackenzie, D. Saltman, H. Hirte, J. Low, C. Johnson, G. Pond, and M. J. Moore, Invest. New Drugs, 25, 553 (2007).CrossRefGoogle Scholar
  7. 7.
    P. Jütten, W. Schumann, A. Härtl, H. M. Dahse, and U. Gräfe, J. Med. Chem., 50, 3661 (2007).CrossRefGoogle Scholar
  8. 8.
    D. S. Kalinowski, Y. Yu, P. C. Sharpe, M. Islam, Y. T. Liao, D. B. Lovejoy, N. Kumar, P. V. Bernhardt, and D. R. Richardson, J. Med. Chem., 50, 3716 (2007).CrossRefGoogle Scholar
  9. 9.
    A. C. Caires, Anticancer Agents Med. Chem., 7, 484 (2007).Google Scholar
  10. 10.
    C. Kirilmis, M. Koca, A. Cukurovali, M. Ahmedzade, and C. Kazaz, Molecules, 10, 1399 (2005).CrossRefGoogle Scholar
  11. 11.
    M. Koca, M. Ahmedzade, A. Cukurovali, and C. Kazaz, Molecules, 10, 747 (2005).CrossRefGoogle Scholar
  12. 12.
    B. A. Wilson, R. Venkatraman, C. Whitaker, and Q. Tillison, Int. J. Environ. Res. Public Health, 2, 170 (2005).CrossRefGoogle Scholar
  13. 13.
    H. Elo, Z. Naturforsch, C: Biosci., 62, 498 (2007).Google Scholar
  14. 14.
    G. Turan-Zitouni, J. A. Fehrentz, P. Chevallet, J. Martinez, Z. A. Kaplancikli, A. Ozdemir, M. Arslanyolu, and M. T. Yildiz, Arch. Pharm.(Weinheim), 340, 310 (2007).CrossRefGoogle Scholar
  15. 15.
    I. Kizilcikli, Y. D. Kurt, B. Akkurt, A. Y. Genel, S. Birteksöz, G. Otük, and B. Ulküseven, Folia Microbiol. (Praha), 52, 15 (2007).Google Scholar
  16. 16.
    T. Rosu, A. Gulea, A. Nicolae, and R. Georgescu, Molecules, 12, 782 (2007).CrossRefGoogle Scholar
  17. 17.
    G. I. Zhungietu and V. G. Granik, Basic Principles of Drug Design [in Russian], Polygraf Publishing House, Moldovian State University Complex, Kishinev (2000), p. 266.Google Scholar
  18. 18.
    G. Abate, T. Koivula, and S. E. Hoffner, Int. J. Tuberc. Lung. Dis., 6, 933 (2002).Google Scholar
  19. 19.
    L. E. Bermudez, R. Reynolds, P. Kolonoski, P. Aralar, C. B. Inderlied, and L. S. Young, Antimicrob. Agents Chemother., 47, 2685 (2003).CrossRefGoogle Scholar
  20. 20.
    K. Waisser, L. Heinisch, M. Slosárek, and J. Janota, Folia Microbiol. (Praha), 50, 479 (2005).CrossRefGoogle Scholar
  21. 21.
    D. Sriram, P. Yogeeswari, R. Thirumurugan, and R. K. Pavana, J. Med. Chem., 49, 3448 (2006).CrossRefGoogle Scholar
  22. 22.
    R. A. Gupta, A. K. Gupta, L. K. Soni, and S. G. Kaskhedikar, Eur. J. Med. Chem., 42, 1109 (2007).CrossRefGoogle Scholar
  23. 23.
    W. Fiala and W. Stadlbauer, J. Prakt. Chem., 335, 128 (1993).CrossRefGoogle Scholar
  24. 24.
    K. A. Khan and A. Shoeb, Indian J. Chem., 24B, 62 (1985).Google Scholar
  25. 25.
    E. D. Jaffe, US Pat. 3132140 (1964). http://ep.espacenet.com.
  26. 26.
    P. Lienhard and E. E. Jaffe, US Pat. 4866112 (1989). http://ep.espacenet.com
  27. 27.
    F. L’Eplattenier, L. Vuitel, and A. Pugin, US Pat. 4008225 (1977). http://ep.espacenet.com
  28. 28.
    I. V. Ukrainets, P. A. Bezuglyi, V. I. Treskach, M. Yu. Kornilov, A. V. Turov, A. I. Maslennikov, S. V. Gladchenko, and V. I. Krivobok, Khim. Geterotsikl. Soedin., 1086 (1992). [Chem. Heterocycl. Comp., 28, 912 (1992)].Google Scholar
  29. 29.
    I. V. Ukrainets, A. A. Tkach, and Liu Yangyang, Khim. Geterotsikl. Soedin., 1655 (2008). [Chem. Heterocycl. Comp., 44, 1347 (2008)].Google Scholar
  30. 30.
    H.-B. Burgi and J. D. Dunitz, Structure Correlation, Vol. 2, VCH, Weinheim (1994), p. 741.CrossRefGoogle Scholar
  31. 31.
    Yu. V. Zefirov, Kristallografiya, 42, 936 (1997).Google Scholar
  32. 32.
    D. H. R. Barton and W. D. Ollis, Comprehensive Organic Chemistry [Russian translation], Vol. 3, Khimiya, Moscow (1982), p. 488.Google Scholar
  33. 33.
    O. V. Turov, T. A. Volovnenko, O. O. Turov, and Yu. M. Volovenko, Zh. Org. Pharm. Khim., 4, No. 2, 30 (2006).Google Scholar
  34. 34.
    G. D. Byrkit and G. A. Michalek, Usp. Khim., 21, 1472 (1952); Ind. Eng. Chem., 42, 1862 (1950).Google Scholar
  35. 35.
    G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data, Rev. 5.1 (1998).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • I. V. Ukrainets
    • 1
  • Liu Yangyang
    • 1
  • A. A. Tkach
    • 1
  • O. V. Gorokhova
    • 1
  • A. V. Turov
    • 2
  1. 1.National University of PharmacyKharkivUkraine
  2. 2.Taras Shevchenko National UniversityKievUkraine

Personalised recommendations