Advertisement

Chemistry of Heterocyclic Compounds

, Volume 45, Issue 5, pp 545–553 | Cite as

Reactions of 1-aryl- and 2,3-diaryl- 5-diazo-6,6-dimethyl-4-oxo-4,5,6,7-tetra- hydroindazoles with N-ethyl- and N-phenyl-substituted maleimides

  • I. Strakova
  • M. Turks
  • E. Bizdena
  • S. Belyakov
  • A. Tokmakov
  • A. StrakovsEmail author
Article

[3+2] Cyclocondensation reactions of a series of 1,3- and 2,3-disubstituted 5-diazo-6,6-dimethyl-4-oxo-4,5,6,7-tetrahydroindazoles with N-ethyl- and N-phenyl-substituted maleimides have been used to obtain the corresponding 6,6-dimethyl-4,4',6'-trioxo-4,5,6,7-3',3'a,4',5',6',6'a-decahydrospiro-[indazole-5,3'-pyrrolo[3,4-c]pyrazoles]. On boiling these compounds in toluene nitrogen is split off and they are converted into 6',6'-dimethyl-2,4,4'-trioxo-4',5',6',7'-tetrahydro-1'H-spiro[3-azabicyclo-(3.1.0)hexane-6,5'-indazoles].

Keywords

1,3- and 2,3-substituted 5-diazo-6,6-dimethyl-4-oxo-4,5,6,7-tetrahydroindazoles N-ethyl- and N-phenylmaleimides [3+2] cycloaddition reactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Shirtcliff, J. Rivers, and M. M. Haley, J. Org. Chem., 71, 6619 (2006).CrossRefGoogle Scholar
  2. 2.
    A. Correa, I. Tellitu, E. Dominguez, and R. SanMartin, J. Org. Chem., 71, 3501 (2006).CrossRefGoogle Scholar
  3. 3.
    V. A. Gorpinchenko, D. V. Petrov, L. V. Spirikhin, V. A. Dokichev, and Yu. V. Tomilov, Zh. Org. Khim., 42, 1718 (2006).Google Scholar
  4. 4.
    A. M. Starosotnikov, A. V. Lobach, V. M. Vinogradov, and S. A. Shevelev, Izv. Akad. Nauk, Ser. Khim., 1686 (2003).Google Scholar
  5. 5.
    J.-Ch. Lien, F.-Yu. Lee, L.-J. Huang, S. L. Pan, J.-H. Guh, S.-M. Teng, and S.-C. Kuo, J. Med. Chem., 45, 4947 (2002).CrossRefGoogle Scholar
  6. 6.
    D. B. Kimball, R. Herges, and M. M. Haley, J. Am. Chem. Soc., 124, 1572 (2002).CrossRefGoogle Scholar
  7. 7.
    V. M. Lyubchanskaya, L. M. Alekseeva, S. A. Savina, and V. G. Granik, Khim. Geterotsikl. Soedin., 1482 (2000). [Chem. Heterocycl. Comp., 36, 1276 (2000)].Google Scholar
  8. 8.
    J. Zadikovicz and P. G. Potvin, J. Heterocycl. Chem., 36, 623 (1999).CrossRefGoogle Scholar
  9. 9.
    G. A. Nishiguchi, A. L. Rodriguez, and J. A. Katzenellenbogen, Bioorg. Med. Chem. Lett., 12, 947 (2002).CrossRefGoogle Scholar
  10. 10.
    R. R. Wilkening, R. W. Ratcliffe, A. K. Fried, D. Meng, W. Sun, L. Colwell, S. Lambert, M. Greenlee, S. Nilsson, A. Thorsell, M. Mojena, C. Tudela, K. Frisch, W. Chan, E. T. Birzin, S. P. Rohrer, and M. L. Hammond, Bioorg. Med. Chem. Lett., 16, 3896 (2006).CrossRefGoogle Scholar
  11. 11.
    K. Y. Avenell, I. Boyfield, M. S. Hadley, C. N. Johnson, D. J. Nash, G. J. Riley, and G. Stemp, Bioorg. Med. Chem. Lett., 9, 2715 (1999).CrossRefGoogle Scholar
  12. 12.
    S. Löber, H. Hübner, and P. Gimeiner, Bioorg. Med. Chem. Lett., 12, 2377 (2002).CrossRefGoogle Scholar
  13. 13.
    K. Wilcoxen, C. O. Huang, J. R. McCarty, D. E. Grigoriadis, and C. Chen, Bioorg. Med. Chem. Lett., 13, 3367 (2003).CrossRefGoogle Scholar
  14. 14.
    V. Colotta, D. Catarzi, F. Varano, L. Cecchi, G. Filacchioni, C. Martini, L. Trincavelli, and A. Lucacchini, J. Med. Chem., 43, 3118 (2000).CrossRefGoogle Scholar
  15. 15.
    T. Mimura, N. Kato, T. Sugaya, M. Ikuta, S. Kato, Y. Kuge, S. Tomioka, and M. Kasai, Synthesis, 947 (1999).Google Scholar
  16. 16.
    E.-S. A. M. Badawey and I. M. El-Ashmawey, Eur. J. Med. Chem., 33, 349 (1998).CrossRefGoogle Scholar
  17. 17.
    A. G. Golikov, S. V. Raikova, A. A. Bugaev, A. P. Kriven'ko, and G. M. Shub, Khim.-farm. Zh., 39, No. 2, 22 (2005).Google Scholar
  18. 18.
    R. F. Kaltenbach, R. M. Klabe, B. C. Cordova, and S. P. Seitz, Bioorg. Med. Chem. Lett., 9, 2259 (1999).CrossRefGoogle Scholar
  19. 19.
    J. Corbera, D. Vaño, D. Martínez, J. M. Vela, D. Zamanilo, A. Dordal, F. Andreu, E. Hernandez, R. Perez, M. Escriche, L. Salgado, S. Yeste, M. T. Serafini, R. Pascual, J. Alegre, M. C. Calvet, N. Cano, M. Carro, H. Buschmann, and J. Holenz, ChemMedChem., 1, 140 (2006).CrossRefGoogle Scholar
  20. 20.
    J. Zadykowicz and P. G. Potvin, J. Org. Chem., 63, 235 (1998).CrossRefGoogle Scholar
  21. 21.
    I. A. Strakova, A. Ya. Strakov, M. V. Petrova, and L. G. Delyatitskaya, Khim. Geterotsikl. Soedin., 533 (2000). [Chem. Heterocycl. Comp., 36, 459 (2000)].Google Scholar
  22. 22.
    I. Strakova, A. Strakov, and M. Petrova, Khim. Geterotsikl. Soedin., 740 (2005). [Chem. Heterocycl. Comp., 41, 637 (2005)].Google Scholar
  23. 23.
    I. Strakova, M. Petrova, and A. Strakovs, Latv. J. Chem., 387 (2005).Google Scholar
  24. 24.
    I. A. Strakova. A. Strakovs, and M. Petrova, Latv. J. Chem., 65 (2003).Google Scholar
  25. 25.
    I. Strakova, A. Strakovs, M. Petrova, and S. Belyakov, Khim. Geterotsikl. Soedin., 1784 (2007). [Chem. Heterocycl. Comp., 43, 1512 (2007)].Google Scholar
  26. 26.
    I. A. Strakova, A. Ya. Strakov, and M. V. Petrova, Khim. Geterotsikl. Soedin., 351 (1995). [Chem. Heterocycl. Comp., 31, 303 (1995)].Google Scholar
  27. 27.
    I. Strakova, A. Strakov, and M. Petrova, Khim. Geterotsikl. Soedin., 1829 (2005). [Chem. Heterocycl. Comp., 41, 1507 (2005)].Google Scholar
  28. 28.
    R. Huisgen, Angew. Chem., 75, 604 (1963).CrossRefGoogle Scholar
  29. 29.
    R. Huisgen, Helv. Chim. Acta, 50, 2421 (1967).CrossRefGoogle Scholar
  30. 30.
    A. Altomare, M. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. Moliterni, and R. Spagna, J. Appl. Crystallogr., 32, 115 (1999).CrossRefGoogle Scholar
  31. 31.
    G. M. Sheldrick, SHELXL97, Program for the Refinement of Crystal Structures, Univ. of Gőttingen, Germany (1997).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • I. Strakova
    • 1
  • M. Turks
    • 1
  • E. Bizdena
    • 1
  • S. Belyakov
    • 2
  • A. Tokmakov
    • 2
  • A. Strakovs
    • 1
    Email author
  1. 1.Riga Technical UniversityRigaLatvia
  2. 2.Latvian Institute of Organic SynthesisRigaLatvia

Personalised recommendations