Advertisement

Chemistry of Heterocyclic Compounds

, Volume 45, Issue 5, pp 560–566 | Cite as

Synthesis of heterocyclic compounds using basic zeolite Csβ*

  • E. V. SuslovEmail author
  • D. V. Korchagina
  • K. P. Volcho
  • N. F. Salakhutdinov
Article

The application of the basic zeolite Csβ as catalyst for the interaction of methyl vinyl ketone (MVK) with 5-methoxybenzimidazole-2-thiol leads to a Michael heteroreaction exclusively at the N-nucleophilic center with the formation of a fairly unusual product of di-addition of MVK to thiol. The reaction of 1,2,4-triazole-3-thiol with MVK in the presence of zeolite Csβ proceeds both at the S- and also at the N-nucleophilic center and leads to the formation of products of mono- and diaddition according to Michael, and also to the product of heterocyclization. On interacting crotonaldehyde with salicylaldehyde in the presence of Csβ 2-methyl-2H-chromene-3-carbaldehyde is formed.

Keywords

methyl vinyl ketone 5-methoxybenzimidazole-2-thiol 1,2,4-triazole-3-thiol basic zeolite heterogeneous catalysis Michael addition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. P. Volcho, S. Yu. Kurbakova, D. V. Korchagina, E. V. Suslov, N. F. Salakhutdinov, A. V. Toktarev, G. V. Echevskii, and V. A. Barkhash, J. Mol. Catal. A: Chem., 195, 263 (2003).CrossRefGoogle Scholar
  2. 2.
    K. P. Volcho, E. V. Suslov, S. Yu. Kurbakova, D. V. Korchagina, N. F. Salakhutdinov, and V. A. Barkhash, Zh. Org. Khim., 40, 691 (2004).Google Scholar
  3. 3.
    R. R. Kumar, S. Perumal, P. Senthilkumar, P. Yogeeswari, and D. Sriram, Bioorg. Med. Chem. Lett., 17, 6459 (2007).CrossRefGoogle Scholar
  4. 4.
    I. V. Magedov, M. Manpadi, N. M. Evdokimov, E. M. Elias, E. Rozhkova, M. A. Ogasawara, J. D. Bettale, N. M. Przheval'skii, S. Rogelj, and A. Kornienko, Bioorg. Med. Chem. Lett., 17, 3872 (2007).CrossRefGoogle Scholar
  5. 5.
    L. Rene and R. Royer, Eur. J. Med. Chem., 10, 72 (1975).Google Scholar
  6. 6.
    S. W. Youn and J. I. Eom, Org. Lett., 7, 3355 (2005).CrossRefGoogle Scholar
  7. 7.
    J. C. Hershberger, L. Zhang, G. Lu, and H. C. Malinakova, J. Org. Chem., 71, 231 (2006).CrossRefGoogle Scholar
  8. 8.
    S. Chang and R. H. Grubbs, J. Org. Chem., 63, 864 (1998).CrossRefGoogle Scholar
  9. 9.
    Q. Wang and M. G. Finn, Org. Lett., 2, 4063 (2000).CrossRefGoogle Scholar
  10. 10.
    C. F. Nising and S. Brase, Chem. Soc. Rev., 37, 1218 (2008).CrossRefGoogle Scholar
  11. 11.
    P. T. Kaye, M. A. Musa, X. W. Nocanda, and R. S. Robinson, Org. Biomol. Chem., 1, 1133 (2003).CrossRefGoogle Scholar
  12. 12.
    G. L. Zhao, Y. L. Shi, and M. Shi, Org. Lett., 7, 4527 (2005).CrossRefGoogle Scholar
  13. 13.
    F. Bigi, S. Carloni, R. Maggi, C. Muchetti, and G. Sartori, J. Org. Chem., 62, 7024 (1997).CrossRefGoogle Scholar
  14. 14.
    H. Li, J. Wang, T. E-Nunu, L. Zu, W. Jiang, S. Wei, and W. Wang, Chem. Commun., 507 (2007).Google Scholar
  15. 15.
    A. Elomri, S. Mitaku, S. Michel, A.-L. Skaltsounis, F. Tillequin, M. Koch, A. Pierré, N. Guilbaud, S. Lénce, L. Kraus-Berthier, Y. Rolland, and G. Atassi, J. Med. Chem., 39, 4762 (1996).CrossRefGoogle Scholar
  16. 16.
    R. Mannhold, G. Cruciani, H. Weber, H. Lemoine, A. Derix, C. Weichel, and M. Clementi, J. Med. Chem., 42, 981 (1999).CrossRefGoogle Scholar
  17. 17.
    P. D. Shinde, V. A. Mahajan, H. B. Borate, V. H. Tillu, R. Bal, A. Chandwadkar, and R. D. Wakharkar, J. Mol. Catal. A: Chem., 216, 115 (2004).Google Scholar
  18. 18.
    R. Sreekumar, P. Rugmini, and R. Padmakumar, Tetrahedron Lett., 38, 6557 (1997).CrossRefGoogle Scholar
  19. 19.
    M. Kumarraja and K. Pitchumani, J. Mol. Catal. A: Chem., 256, 138 (2006).CrossRefGoogle Scholar
  20. 20.
    J. M. Shin, Y. M. Cho, and G. Sachs, J. Am. Chem. Soc., 126, 7800 (2004).CrossRefGoogle Scholar
  21. 21.
    M. Uchida, M. Chihiro, S. Morita, T. Kanbe, H. Yamashita, K. Yamasaki, Y. Yabuuchi, and K. Nakagawa, Chem. Pharm. Bull., 37, 2109 (1989).Google Scholar
  22. 22.
    D. J. K. Crawford, J. L. Maddocks, D. N. Jones, and P. Szawlowski, J. Med. Chem., 39, 2690 (1996).CrossRefGoogle Scholar
  23. 23.
    L. V. Volkov and K. A. Volkova, Zh. Org. Khim., 42, 447 (2006).Google Scholar
  24. 24.
    G. G. Skvortsova, N. D. Abramova, and B. V. Trzhtsinskaya, Khim. Geterotsikl. Soedin., 1390 (1974). [Chem. Heterocycl. Comp., 10, 1217 (1974)].Google Scholar
  25. 25.
    E. I. Grinblat and I. Ya. Postovskii, Zh. Obshch. Khim., 31, 394 (1961).Google Scholar
  26. 26.
    D. Moran, K. Sukcharoenphon, R. Puchta, H. F. Schaefer III, P. v. R. Schleyer, and C. D. Hoff, J. Org. Chem., 67, 9061 (2002).CrossRefGoogle Scholar
  27. 27.
    G. G. Skvortsova, N. D. Abramova, A. G. Mal’kina, Yu. M. Skvortsov, B. V. Trzhtsinskaya, and A. I. Albanov, Khim. Geterotsikl. Soedin., 963 (1982). [Chem. Heterocycl. Comp., 18, 736 (1982)].Google Scholar
  28. 28.
    H. Arai, S. Shima, and N. Murata, Kogyo Kagaku Zasshi, 62, 82 (1959); Chem. Abs., 57, 8555 (1962).Google Scholar
  29. 29.
    V. Bavetsias, J. H. Marriott, C. Melin, R. Kimbell, Z. S. Matusiak, F. T. Boyle, and A. L. Jackman, J. Med. Chem., 43, 1910 (2000).CrossRefGoogle Scholar
  30. 30.
    A. A. Shklyarenko, D. G. Nasledov, and V. V. Yakovlev, Zh. Org. Khim., 41, 636 (2005).Google Scholar
  31. 31.
    G. G. Furin and E. L. Zhuzhgov, Zh. Org. Khim., 41, 441 (2005).Google Scholar
  32. 32.
    A. E. Farargy, F. Yassin, E. Abdel-Chani, N. El-Said, and R. Saleh, Heterocycles, 34, 25 (1992).CrossRefGoogle Scholar
  33. 33.
    S. Ramaswamy and A. C. Oehlschlager, Can. J. Chem., 67, 794 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • E. V. Suslov
    • 1
    Email author
  • D. V. Korchagina
    • 1
  • K. P. Volcho
    • 1
  • N. F. Salakhutdinov
    • 1
  1. 1.N. N. Vorozhtsov Novosibirsk Institute of Organic ChemistrySiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations