Advertisement

Chemistry of Heterocyclic Compounds

, Volume 45, Issue 2, pp 182–187 | Cite as

Synthesis and cytotoxicity of methyl-substituted 8-quinolineselenolates of ruthenium, rhodium, osmium, and iridium

  • E. LukevicsEmail author
  • D. Zaruma
  • J. Ashaks
  • I. Shestakova
  • I. Domracheva
  • V. Bridane
  • E. Yashchenko
Article

A series of 2-methyl, 4-methyl, and 2,4-dimethyl-8-quinolineselenolates of ruthenium, rhodium, osmium, and iridium has been synthesized and their cytotoxicity towards HT-1080 (human fibrosarcoma) and MG-22A (mouse hepatoma) tumor cells studied. It was found that all of the osmium complexes had a high cytotoxicity towards both cell lines. Their toxicity towards the normal mouse embryonic fibroblasts NIH-3T3 depends on the position and number of methyl groups in the quinoline ring and decreases in the order 2-Me > 4-Me > 2,4-Me2. The greatest selectivity in cytoxic activity is noted for iridium 4-methyl-8-quinolineselenolate and ruthenium 2-methyl-8-quinolineselenolate.

Keywords

methyl-8-quinolineselenolates of iridium osmium rhodium and ruthenium synthesis toxicity cytotoxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Brabec, J. Kasparkova, in: M. Gielen and E. R. T. Tiekink (editors), Metallotherapeutic Drugs and Metal-Based Diagnostic Agents, J. Wiley and Sons Ltd., Chichester (2005), p. 489.CrossRefGoogle Scholar
  2. 2.
    P. C. Bruijnincx and P. J. Sadler, Current Opinion in Chemical Biology, 12, 197 (2008).CrossRefGoogle Scholar
  3. 3.
    O. Lentzen, C. Mouchenon, and A. Kirsch-De Mesmaeker, in: M. Gielen and E. R. T. Tiekink (editors), Metallotherapeutic Drugs and Metal-Based Diagnostic Agents, J. Wiley and Sons Ltd., Chichester (2005), p. 359.CrossRefGoogle Scholar
  4. 4.
    P. J. Dyson and G. Sava, Dalton Trans., 1929 (2006).Google Scholar
  5. 5.
    I. Kostova, Curr. Med. Chem., 13, 1085 (2006).CrossRefGoogle Scholar
  6. 6.
    H. A. Wee and P. J. Dyson, Eur. J. Inorg. Chem., 4003 (2006).Google Scholar
  7. 7.
    E. Meggers, G. E. Atilla-Gokcumen, H. Bregman, J. Maksimoska, S. P. Mulcahy, N. Pagano, and D. S. Williams, Synlett, 1177 (2007).Google Scholar
  8. 8.
    S. S. Karki, S. Thota, S. Y. Darj, J. Balzarini, and E. De Clercq, Bioorg. Med. Chem., 15, 6632 (2007).CrossRefGoogle Scholar
  9. 9.
    C. A. Vock, W. H. Ang, C. Scolaro, A. D. Phillips, L. Lagopoulos, L. Juillerat-Jeanneret, G. Sava, R. Scopelliti, and P. J. Dyson, J. Med. Chem., 50, 2166 (2007).CrossRefGoogle Scholar
  10. 10.
    M. Auzias, B. Therrien, G. Süss-Fink, P. Štěpnička, H. A. Wee, and P. J. Dyson, Inorg. Chem., 47, 578 (2008).CrossRefGoogle Scholar
  11. 11.
    I. Bratsos, A. Bergamo, G. Sava, T. Gianferrara, E. Zangrando, and E. Alessio, J. Inorg. Biochem., 102, 606 (2008).CrossRefGoogle Scholar
  12. 12.
    I. Bratsos, S. Jedner, A. Bergamo, G. Sava, T. Gianferrara, E. Zangrando, and E. Alessio, J. Inorg. Biochem., 102, 1120 (2008).CrossRefGoogle Scholar
  13. 13.
    S. J. Dougan, A. Habtemariam, S. E. McHale, S. Parsons, and P. J. Sadler, Proc. Natl. Acad. Sci. USA, 105, 11628 (2008).CrossRefGoogle Scholar
  14. 14.
    B. Dutta, C. Scolaro, R. Scopelliti, P. J. Dyson, and K. Severin, Organometallics, 27, 1355 (2008).CrossRefGoogle Scholar
  15. 15.
    A. Garza-Ortiz, P. V. Maheswari, M. Siegler, A. L. Spek, and J. Reedijk, Inorg. Chem., 47, 6964 (2008).CrossRefGoogle Scholar
  16. 16.
    M. Gras, B. Therrien, G. Süss-Fink, P. Štěpnička, A. K. Renfrew, and P. J. Dyson, J. Organomet. Chem., 693, 3419 (2008).CrossRefGoogle Scholar
  17. 17.
    M.-G. Mendoza-Ferri, C. G. Hartinger, R. E. Eichinger, N. Stolyarova, K. Severin, M. A. Jakupec, A. A. Nazarov, and B. K. Keppler, Organometallics, 27, 2405 (2008).CrossRefGoogle Scholar
  18. 18.
    C. Tan, J. Liu, H. Li, W. Zheng, S. Shi, L. Chen, and L. Ji, J. Inorg. Biochem., 102, 347 (2008).CrossRefGoogle Scholar
  19. 19.
    C. Tan, J. Liu, L. Chen, S. Shi, and L. Ji, J. Inorg. Biochem, 102, 1644 (2008).CrossRefGoogle Scholar
  20. 20.
    C. A. Vock, A. K. Renfrew, R. Scopelliti, L. Juillerat-Jeanneret, and P. J. Dyson, Eur. J. Inorg. Chem., 1661 (2008).Google Scholar
  21. 21.
    F. Schmitt, P. Govindaswamy, G. Süss-Fink, W. H. Ang, P. D. Dyson, L. Juillerat-Jeanneret, and B. Therrien, J. Med. Chem., 51, 1811 (2008).CrossRefGoogle Scholar
  22. 22.
    A. Dorcier, W. H. Ang, S. Bolaño, L. Gonsalvi, L. Juillerat-Jeanneret, G. Laurenzy, M. Peruzzini, A. D. Phillips, F. Zanobini, and P. J. Dyson, Organometallics, 27, 4090 (2006).CrossRefGoogle Scholar
  23. 23.
    F. P. Pruchnik in: M. Gielen and E. R. T. Tiekink (editors), Metallotherapeutic Drugs and Metal-Based Diagnostic Agents, J. Wiley and Sons Ltd., Chichester (2005), p. 379.CrossRefGoogle Scholar
  24. 24.
    D. A. Medvetz, K. D. Stakleff, T. Schreiber, P. D. Custer, K. Hindi, M. J. Panzner, D. D. Blanko, M. J. Tashner, C. A. Tessier, and W. J. Youngs, J. Med. Chem., 50, 1703 (2007).CrossRefGoogle Scholar
  25. 25.
    N. J. Wheate, C. R. Brodie, J. G. Collins, S. Kemp, and J. R. Aldrich-Wright, Mini-Rev. Med. Chem., 7, 627 (2007).CrossRefGoogle Scholar
  26. 26.
    M. Harlos, I. Ott, R. Gust, H. Alborzinia, S. Wölfe, A. Kromm, and W. S. Sheldrick, J. Med. Chem., 51, 3924 (2008).CrossRefGoogle Scholar
  27. 27.
    A. F. A. Peacock, A. Habtemariam, S. A. Moggach, A. Prescimone, S. Parsons, and P. J. Sadler, Inorg. Chem., 46, 4049 (2007).CrossRefGoogle Scholar
  28. 28.
    A. F. A. Peacock, M. Melchart, R. J. Deeth, A. Habtemariam, S. Parsons, and P. J. Sadler, Chem. Eur. J., 13, 2601 (2007).CrossRefGoogle Scholar
  29. 29.
    A. F. A. Peacock, S. Parsons, and P. J. Sadler, J. Am. Chem. Soc., 129, 3348 (2007).CrossRefGoogle Scholar
  30. 30.
    H. Kostrhunova, J. Florian, O. Novakova, A. F. A. Peacock, P. J. Sadler, and V. Brabec, J. Med. Chem., 51, 3635 (2008).CrossRefGoogle Scholar
  31. 31.
    I. N. Stepanenko, A. A. Krokhin, R. O. John, A. Roller, V. B. Arion, M. A. Jakupec, and B. K. Keppler, Inorg. Chem., 47, 7338 (2008).CrossRefGoogle Scholar
  32. 32.
    E. Lukevics, I. Shestakova, I. Domracheva, A. Nesterova, D. Zaruma, and J. Ashaks, Khim. Geterotsikl. Soedin., 870 (2006). [Chem. Heterocycl. Comp., 42, 761 (2006)].Google Scholar
  33. 33.
    E. Lukevics, I. Shestakova, I. Domracheva, E. Yashchenko, D. Zaruma, and J. Ashaks, Khim. Geterotsikl. Soedin., 755 (2007). [Chem. Heterocycl. Comp., 43, 634 (2007)].Google Scholar
  34. 34.
    E. Lukevics, D. Zaruma, J. Ashaks, I. Shestakova, I. Domracheva, A. Gulbe, and V. Bridane, Khim. Geterotsikl. Soedin., 711 (2008). [Chem. Heterocycl. Comp., 44, 559 (2008)].Google Scholar
  35. 35.
    J. Ashaks, Yu. Bankovskii, D. Zaruma, I. Shestakova, I. Domracheva, A. Nesterova, and E. Lukevics, Khim. Geterotsikl. Soedin., 905 (2004). [Chem. Heterocycl. Comp., 40, 776 (2004)].Google Scholar
  36. 36.
    M. A. Scharwitz, I. Ott, R. Gust, A. Kromm, and W. S. Sheldrick, J. Inorg. Biochem., 102, 1623 (2008).CrossRefGoogle Scholar
  37. 37.
    K. El-Bayoumy, Cancer Res., 45, 3631 (1985).Google Scholar
  38. 38.
    B. S. Reddy, T. Tanaka, and B. Simi, J. Nat. Cancer. Inst., 75, 791 (1985).Google Scholar
  39. 39.
    E. Lukevics, P. Arsenyan, K. Rubina, I. Shestakova, I. Domracheva, A. Nesterova, J. Popelis, and O. Pudova, Appl. Organomet. Chem., 16, 235 (2000).CrossRefGoogle Scholar
  40. 40.
    E. Lukevics, P. Arsenyan, I. Shestakova, I. Domracheva, I. Kanepe, S. Belyakov, J. Popelis, and O. Pudova, Appl. Organomet. Chem., 16, 228 (2000).CrossRefGoogle Scholar
  41. 41.
    S. W. May, Expert Opinion on Investigational Drugs, 11, 1261 (2002).CrossRefGoogle Scholar
  42. 42.
    M. Koketsu and H. Ishihara, Curr. Org. Chem., 7, 175 (2003).CrossRefGoogle Scholar
  43. 43.
    A. J. Duffield-Lillico, I. Shureiqi, and S. M. Lippman, J. Nat. Cancer Inst., 96, 1645 (2004).CrossRefGoogle Scholar
  44. 44.
    C. W. Nogueira, G. Zeni, and J. B. T. Rocha, Chem. Rev., 104, 6255 (2004).CrossRefGoogle Scholar
  45. 45.
    M. Soriano-Garcia, Curr. Med. Chem., 11, 1657 (2004).Google Scholar
  46. 46.
    P. D. Whanger, in: A. S. Award and P. G. Bradford (editors), Nutrition and Cancer Prevention, CRC, Taylor and Francis Group. Boca Raton, London, New York (2006), p. 189.Google Scholar
  47. 47.
    L. Letavayová, V. Vlčková, and J. Brozmanová, Toxicology, 227, 1 (2006).CrossRefGoogle Scholar
  48. 48.
    G-X. Li, H. Hu, C. Jiang, T. Schuster, and J. Lu, Int. J. Cancer, 120, 2034 (2007).CrossRefGoogle Scholar
  49. 49.
    W. M. El-Sayed, T. Aboul-Fadl, J. C. Roberts, J. G. Lamb, and M. R. Franklin, Toxicology in Vitro, 21, 157 (2007).CrossRefGoogle Scholar
  50. 50.
    W. Mól, M. Matyja, B. Filip, J. Wietrzyk, and S. Boryczka, Bioorg. Med. Chem., 16, 8136 (2008).CrossRefGoogle Scholar
  51. 51.
    E. Lukevics, I. Shestakova, I. Domracheva, A. Nesterova, J. Ashaks, and D. Zaruma, Khim. Geterotsikl. Soedin., 59 (2006). [Chem. Heterocycl. Comp., 42, 53 (2006)].Google Scholar
  52. 52.
    Guidance Document on Using in vitro Data to Estimate in vivo Starting Doses for Acute Toxicity, National Institute of Health, US Dept. of Health and Human Services (2001), p. 12.Google Scholar
  53. 53.
    G. Veinberg, M. Vorona, I. Shestakova, I. Kanepe, O. Zharkova, R. Mezapuke, I. Turovskis, I. Kalvinsh, and E. Lukevics, Bioorg. Med. Chem., 8, 1033 (2000).CrossRefGoogle Scholar
  54. 54.
    E. Lukevics, L. Ignatovich, I. Sleiksha, V. Muravenko, I. Shestakova, S. Belyakov, and J. Popelis, Appl. Organometal. Chem., 20, 454 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • E. Lukevics
    • 1
    Email author
  • D. Zaruma
    • 2
  • J. Ashaks
    • 2
  • I. Shestakova
    • 1
  • I. Domracheva
    • 1
  • V. Bridane
    • 1
  • E. Yashchenko
    • 1
  1. 1.Latvian Institute of Organic SynthesisRigaLatvia
  2. 2.Inorganic Chemistry Institute of the Riga Technical UniversitySalaspilsLatvia

Personalised recommendations