Skip to main content

Advertisement

Log in

Synthesis of N'-substituted amidines through the cleavage an oxadiazolone heterocycle by weakly basic nucleophiles. Effect of the nature of the nucleophile and of the nucleophile/substrate molar ratio

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

The reaction of 1-ethoxycarbonylmethyl-5,5,7,7-tetramethyl-2-oxo-tetrahydroimidazo[1,5-b]oxadiazol-6-oxyl with the weakly basic nucleophiles NaN3, NaCN, KF, KBr, KCl and NaNO2 has been studied. It was shown for the first time that, as in the case of NaOH and MeONa, the reaction occurs with opening of the oxadiazolone ring to form exo-N-substituted amidines. It was shown that the weakly basic nucleophiles readily react with substrates which contain a substituent sensitive to attack by such nucleophiles as NaOH or MeONa. The effect of the nature of the nucleophiles on the reaction course for opening of the oxadiazolone ring was also studied. It was found that the reactivity of the nucleophiles in DMSO changes in the series F > CN > N 3 >NO 2 > Cl > Br and qualitatively correlates with their basicities in this solvent. Examination of the effect of the ratio of the reagents on the degree of conversion of the starting oxadiazolone has shown that a quantity of nucleophiles less than one equivalent also allowed the cleavage reaction of the oxadiazolone heterocycle to go to completion through just increasing the reaction time. The experimental data obtained lends support to the proposed reaction scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. S. C. Black, R. F. Crozier, and V. C. Davis, Synthesis, 4, 205 (1975).

    Article  Google Scholar 

  2. N. Coskun and A. Parlar, Synth. Commun., 36, 997 (2006).

    Article  CAS  Google Scholar 

  3. H. Seidl, R. Huisgen, and R. Grashey, Chem. Ber. 102, 926 (1969).

    Article  CAS  Google Scholar 

  4. T. Hisano, S. Yoshikawa, and K. Muraoka, Chem. Pharm. Bull., 22, 1611 (1974).

    CAS  Google Scholar 

  5. J. Goerdeler and R. Schimpf, Chem. Ber., 106, 1496 (1973).

    Article  CAS  Google Scholar 

  6. C. J. Wilkerson and F. D. Green, J. Org. Chem., 40, 3112 (1975).

    Article  CAS  Google Scholar 

  7. V. G. Granik, Usp. Khim., 52, 669 (1983).

    CAS  Google Scholar 

  8. V. A. Dorokhov and M. A. Prezent, Izv. Akad Nauk, Ser. Khim., 888 (1994).

  9. S. Dagorne, I. A. Guzei, M. P. Coles, and R. F. J. Jordan, J. Amer. Chem. Soc., 122, 274 (2000).

    Article  CAS  Google Scholar 

  10. J. Barker and M. Kilner, Coord. Chem. Rev., 133, 219 (1994).

    Article  CAS  Google Scholar 

  11. J. A. Tucker, T. L. Clyton, C. G. Chidester, M. W. Schulz, L. E. Harrington, S. J. Conrad, Y. Yagi, N. L. Oien. D. Yurek, and M.-S. Kuo, Bioorg. Med. Chem., 8, 601 (2001).

    Article  Google Scholar 

  12. V. V. Khramtsov and L. B. Volodarsky in L. J. Berliner (editor), Spin Labelling: The Next Millennium: Biological Magnetic Resonance, Vol. 14, Plenum Press, New York (1998), p.109.

    Google Scholar 

  13. T. A. Berezina, V. V. Martin, L. B. Volodarsky, V. V. Khramtsov, and L. M. Vainer, Bioorg. Khim., 16, 262 (1990).

    CAS  Google Scholar 

  14. J. F. Polienko, T. Schanding, Y. V. Gatilov, I. A. Grigor’ev, and M. A. Voinov, J. Org. Chem., 73, 502 (2008).

    Article  CAS  Google Scholar 

  15. T. A. Berezina, V. A. Reznikov, and L. B. Volodarsky, Tetrahedron, 49, 10693 (1993).

    Article  CAS  Google Scholar 

  16. F. G. Bordwell, Acc. Chem. Res., 21, 456 (1988).

    Article  CAS  Google Scholar 

  17. J. O. Edwards and R. G. Pearson, J. Am. Chem. Soc., 84, 16 (1962).

    Article  CAS  Google Scholar 

  18. R. G. Parr and R. G. Pearson, J. Am. Chem. Soc., 105, 7512 (1983).

    Article  CAS  Google Scholar 

  19. S. A. Shevelev, Usp. Khim., 39, 1773 (1970).

    CAS  Google Scholar 

  20. E. A. S. Cavell, J. Chem. Soc., 4217 (1958).

  21. S. Winstein, L. G. Savedoff, S. Smith, I. D. R. Stevens, and J. S. Gall, Tetrahedron Lett., 1, 24 (1960).

    Article  Google Scholar 

  22. R. F. Rodewald, K. Mahendran, J. L. Bear, and R. Fuchs, J. Amer. Chem. Soc., 90, 6698 (1968).

    Article  CAS  Google Scholar 

  23. J. Korkisch, Handbook of Ion Exchange Resins: Their Application to Inorganic Analytical Chemistry, Vol. 1, CRC Press Inc., Boca Raton, Florida (1989).

    Google Scholar 

  24. M. Balakirev, V. V. Khramtsov, T. A. Berezina, V. V. Martin, and L. B. Volodarsky, Synthesis, 12, 1223 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Voinov.

Additional information

Dedicated to Academician B. A. Trofimov in his 70th jubilee.

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 71–78, January, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polienko, Y.F., Grigor’yev, I.A. & Voinov, M.A. Synthesis of N'-substituted amidines through the cleavage an oxadiazolone heterocycle by weakly basic nucleophiles. Effect of the nature of the nucleophile and of the nucleophile/substrate molar ratio. Chem Heterocycl Comp 45, 59–65 (2009). https://doi.org/10.1007/s10593-009-0226-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-009-0226-6

Keywords

Navigation