Skip to main content
Log in

Theoretical investigation of photoelectron spectra of furan, pyrrole, thiophene, and selenole

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

The ionization spectra of furan, pyrrole, thiophene, and selenophene have been calculated within the framework of the nonempirical quantum-chemical method with the Green's one-particle function in the approximation of the third order algebraic diagram construction [ADC(3)]. The calculated energies and the intensity of vertical transitions pertaining to the ionization of outer and inner shells are compared with the newest experimental data. The good agreement of theoretical and experimental results enabled a detailed assignment and interpretation of the observed photoelectron spectra to be carried out. Problems of disturbing the picture of orbital ionization are considered; the mechanism of formation of low-lying photoelectron satellites is explained. Certain general rules and trends of the behavior of the spectra of the systems studied are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Katritzky and A. F. Pozharskii, Handbook of Heterocyclic Chemistry, Acad. Press, Amsterdam (2000).

    Google Scholar 

  2. A. Gossauer, Die Chemie der Pyrrole, Springer, Berlin (1974).

    Google Scholar 

  3. R. A. Jones, E. C. Taylor, and A. Weissberger (editors), The Chemistry of Heterocyclic Compounds, Pyrroles, Vol. 48, Pt. 1, Wiley, New York (1992).

    Google Scholar 

  4. R. A. Jones, E. C. Taylor, and A. Weissberger (editors), The Chemistry of Heterocyclic Compounds, Pyrroles, Vol. 48, Pt. 2, Wiley, New York (1992).

    Google Scholar 

  5. S. Gronowitz, E. C. Taylor, and A. Weissberger (editors), The Chemistry of Heterocyclic Compounds, Thiophene and Its Derivatives, Vol. 44, Wiley, New York (1991) Pt. 4.

    Google Scholar 

  6. J.-L. Bredas and R. Silbey (editors), Conjugated Polymers: The Novel Science and Technology of Highly Conducting and Nonlinear Optically Active Materials, Kluwer, Dordrecht (1991).

    Google Scholar 

  7. E. Weigold and I. McCarthy, Electron Momentum Spectroscopy, Kluwer, New York (1999).

    Google Scholar 

  8. K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, and S. Iwata, Handbook of He I Photoelectron Spectra of Fundamental Organic Molecules, Halsted, New York (1981).

    Google Scholar 

  9. D. W. Turner, C. Baker, A. D. Baker, and C. R. Brundle, Molecular Photoelectron Spectroscopy, Wiley, London (1970).

    Google Scholar 

  10. M. H. Palmer, I. C. Walker, C. C. Ballard, and M. F. Guest, Chem. Phys., 192, 111 (1995).

    Article  CAS  Google Scholar 

  11. E. E. Rennie, C. A. F. Johnson, J. E. Parker, D. M. P. Holland, D. A. Shaw, M. A. MacDonald, M. A. Hayes, and L. G. Shpinkova, Chem. Phys., 236, 365 (1998).

    Article  CAS  Google Scholar 

  12. M. H. Palmer, I. C. Walker, and M. F. Guest, Chem. Phys., 238, 179 (1998).

    Article  CAS  Google Scholar 

  13. E. E. Rennie, C. A. F. Johnson, J. E. Parker, R. Ferguson, D. M. P. Holland, and D. A. Shaw, Chem. Phys., 250, 217 (1999).

    Article  CAS  Google Scholar 

  14. M. H. Palmer, I. C. Walker, and M. F. Guest, Chem. Phys., 241, 275 (1999).

    Article  CAS  Google Scholar 

  15. P. J. Derrick, L. Asbrink, O. Edqvist, and E. Lindholm, Spectrochim. Acta, 27A, 2525 (1971).

    Google Scholar 

  16. P. J. Derrick, L. Asbrink, O. Edqvist, B.-O. Jonsson, and E. Lindholm, Int. J. Mass Spectrom. Ion Phys., 6, 161 (1971).

    Article  CAS  Google Scholar 

  17. P. J. Derrick, L. Asbrink, O. Edqvist, B.-O. Jonsson, and E. Lindholm, Int. J. Mass Spectrom. Ion Phys., 6, 177 (1971).

    Article  CAS  Google Scholar 

  18. P. J. Derrick, L. Asbrink, O. Edqvist, B.-O. Jonsson, and E. Lindholm, Int. J. Mass Spectrom. Ion Phys., 6, 191 (1971).

    Article  CAS  Google Scholar 

  19. G. Bieri, L. Asbrink, and W. von Niessen, J. Electron Spectrosc. Relat. Phenom., 27, 129 (1982).

    Article  CAS  Google Scholar 

  20. J. A. Sell and A. Kuppermann, Chem. Phys. Lett., 61, 355 (1979).

    Article  CAS  Google Scholar 

  21. M. Takahasi, K. Otsuka, and Y. Udagawa, Chem. Phys., 227, 375 (1998).

    Article  Google Scholar 

  22. M. Takahasi, R. Ogino, and Y. Udagawa, Chem. Phys. Lett., 288, 821 (1998).

    Article  Google Scholar 

  23. U. Gelius, C. J. Allan, G. Johansson, H. Siegbahn, D. A. Allison, and K. Siegbahn, Phys. Scr., 3, 237 (1971).

    Article  CAS  Google Scholar 

  24. A. D. O. Bawagan, B. J. Olsson, K. H. Tan, J. M. Chen, and B. X. Yang, Chem. Phys., 164, 283 (1992).

    Article  CAS  Google Scholar 

  25. T. Munakata, K. Kuchitsu, and Y. Harada, J. Electron Spectrosc. Relat. Phenom., 20, 235 (1980).

    Article  CAS  Google Scholar 

  26. N. Kishimoto, H. Yamakado, and K. Ohno, J. Phys. Chem., 100, 8204 (1996).

    Article  CAS  Google Scholar 

  27. S. F. Zhang, X. G. Ren, G. L. Su, C. G. Ning, H. Zhou, B. Li, G. O. Li, and J. K. Deng, Chem. Phys., 327, 269 (2006).

    Article  CAS  Google Scholar 

  28. D. M. P. Holland, L. Karlsson, and W. von Niessen, J. Electron Spectrosc. Relat. Phenom., 113, 221 (2001).

    Article  CAS  Google Scholar 

  29. I. Powis, I. L. Zaytseva, A. B. Trofimov, J. Schirmer, D. M. P. Holland, A. W. Potts, and L. Karlsson, J. Phys. B: At. Mol. Opt. Phys., 40, 2019 (2007).

    Article  CAS  Google Scholar 

  30. A. B. Trofimov, J. Schirmer, D. M. P. Holland, L. Karlsson, R. Maripuu, K. Siegbahn, and A. W. Potts, Chem. Phys., 263, 167 (2001).

    Article  CAS  Google Scholar 

  31. A. W. Potts, A. B. Trofimov, J. Schirmer, D. M. P. Holland, and L. Karlsson, Chem. Phys., 271, 337 (2001).

    Article  CAS  Google Scholar 

  32. A. B. Trofimov, J. Schirmer, D. M. P. Holland, A. W. Potts, L. Karlsson, R. Maripuu, and K. Siegbahn, J. Phys. B: At. Mol. Opt. Phys., 35, 5051 (2002).

    Article  CAS  Google Scholar 

  33. L. S. Cederbaum, W. Domcke, J. Schirmer, and W. von Niessen, Adv. Chem. Phys., 65, 115 (1986).

    Article  CAS  Google Scholar 

  34. W. von Niessen, L. S. Cederbaum, and G. H. F. Diercksen, J. Am. Chem. Soc., 98, 2066 (1976).

    Article  Google Scholar 

  35. W. von Niessen, W. P. Kraemaer, and L. S. Cederbaum, J. Electron Spectrosc. Relat. Phenom., 8, 179 (1976).

    Article  Google Scholar 

  36. G. De Alti and P. Decleva, Chem. Phys. Lett., 77, 413 (1981).

    Article  Google Scholar 

  37. M. Ehara, Y. Ohtsuka, H. Nakatsuji, M. Takahashi, and Y. Udagawa, J. Chem. Phys., 122, 234319-01 (2005).

    Google Scholar 

  38. W. von Niessen, J. Schirmer, and L. S. Cederbaum, Comp. Phys. Rep., 1, 57 (1984).

    Article  Google Scholar 

  39. J. Schirmer, L. S. Cederbaum, and O. Walter, Phys. Rev. A., 28, 1237 (1983).

    Article  CAS  Google Scholar 

  40. J. Schirmer and G. Angonoa, J. Chem. Phys., 91, 1754 (1989).

    Article  CAS  Google Scholar 

  41. M. S. Deleuze, A. B. Trofimov, and L. S. Cederbaum, J. Chem. Phys., 115, 5859 (2001).

    Article  CAS  Google Scholar 

  42. A. W. Potts, D. M. P. Holland, A. B. Trofimov, J. Schirmer, L. Karlsson, and K. Siegbahn, J. Phys. B: At. Mol. Opt. Phys., 36, 3129 (2003).

    Article  CAS  Google Scholar 

  43. A. B. Trofimov, J. Schirmer, V. B. Kobychev, A. W. Potts, D. M. P. Holland, and L. Karlsson, J. Phys. B: At. Mol. Opt. Phys., 39, 305 (2006).

    Article  CAS  Google Scholar 

  44. W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys., 56, 2257 (1972).

    Article  CAS  Google Scholar 

  45. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys., 72, 650 (1980).

    Article  CAS  Google Scholar 

  46. T. Clarck, J. Chandrasekhar, G. W. Spitznagel, and P. v. R. Schleyer, J. Comput. Chem., 4, 294 (1983).

    Article  Google Scholar 

  47. P. C. Hariharan and J. A. Pople, Theoret. Chimica Acta, 28, 213 (1973).

    Article  CAS  Google Scholar 

  48. A. D. McLean and G. S. Chandler, J. Chem. Phys., 72, 5639 (1980).

    Article  CAS  Google Scholar 

  49. L. A. Curtiss, M. P. McGrath, J.-P. Blandeau, N. E. Davis, R. C. Binning, Jr., and L. Radom, J. Chem. Phys., 103, 6104 (1995).

    Article  CAS  Google Scholar 

  50. O. Walter and J. Schirmer, One-Particle Green's Function ADC(3) Code; G. Angonoa and J. Schirmer, The Constant Diagram Code, Further Developed by M. K. Scheller and A. B. Trofimov, TC/PCI/Heidelberg University, 1984–2002.

  51. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 14, 1347 (1993).

    Article  CAS  Google Scholar 

  52. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98, Revision A.7, Gaussian Inc., Pittsburgh PA (1998).

    Google Scholar 

  53. A. B. Trofimov, H. Kőppel, and J. Schirmer, J. Chem. Phys., 109, 1025 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Trofimov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences B. A. Trofimov on his 70th jubilee.

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1366–1379. September, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trofimov, A.B., Zaitseva, I.L., Moskovskaya, T.E. et al. Theoretical investigation of photoelectron spectra of furan, pyrrole, thiophene, and selenole. Chem Heterocycl Comp 44, 1101–1112 (2008). https://doi.org/10.1007/s10593-008-0159-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-008-0159-5

Keywords

Navigation