Advertisement

Chemistry of Heterocyclic Compounds

, Volume 44, Issue 5, pp 530–541 | Cite as

Alkylation of the ambident indole ion in ionic liquids

  • G. Vavilina
  • A. Zicmanis
  • S. Drozdova
  • P. Mekss
  • M. Klavins
Article

Abstract

Alkylation of the ambident indole anion in ionic liquids has been investigated. The reaction rate is greater in ionic liquids than in organic solvents. The polarity of certain ionic liquids has been determined to be located between methanol and acetonitrile.

Keywords

ambident anion indole ionic liquids alkylation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Earle, P. B. McCormac, and K. R. Seddon, J. Chem. Soc., Chem. Commun., 2245 (1998).Google Scholar
  2. 2.
    Z.-G. Le, Z.-C. Chen, Y. Hu, and Q.-G. Zheng, Synthesis, 2, 208 (2004).Google Scholar
  3. 3.
    Y. R. Jorapur, J. M. Jeong, and D. Y. Chi, Tetrahedron Lett., 47, 2435 (2006).CrossRefGoogle Scholar
  4. 4.
    M. J. Earle, P. B. McCormac, and K. R. Seddon, Green Chem., 2, 261 (2000).CrossRefGoogle Scholar
  5. 5.
    A. Zicmanis, G. Vavilina, S. Drozdova, P. Mekss, and M. Klavins, Central Eur. J. Chem., 5, 156 (2007).CrossRefGoogle Scholar
  6. 6.
    A. Zicmanis, A. Ozolina, P. Mekss, and M. Klavins, Latv. J. Chem., 141 (2006).Google Scholar
  7. 7.
    A. Zicmanis, G. Vavilina, S. Drozdova, M. Klavins, and P. Mekss, Latv. J. Chem., 301 (2006).Google Scholar
  8. 8.
    A. Zicmanis, G. Vavilina, M. Klavins, and P. Mekss, Latv. J. Chem., 172 (2007).Google Scholar
  9. 9.
    G. V. Kryshtal, G. M. Zhdankina, and S. G. Zlotin, Mendeleev Commun., 57 (2002).Google Scholar
  10. 10.
    M. Badri, J.-J. Brunet, and R. Perron, Tetrahedron Lett., 33, 4435 (1992).CrossRefGoogle Scholar
  11. 11.
    G. Shao, Hecheng Huaxue, 11, 6 (2003); Chem. Abs., 139, 116960 (2003).Google Scholar
  12. 12.
    D. R. MacFarlane, J. M. Pringle, K. M. Johansson, S. A. Forsyth, and M. Forsyth, J. Chem. Soc., Chem. Commun., 1905 (2006).Google Scholar
  13. 13.
    J. Dupont, C. S. Consorti, and J. Spencer, J. Brazil. Chem. Soc., 11, 337 (2000).Google Scholar
  14. 14.
    S. T. Handy, Curr. Org. Chem., 9, 959 (2005).CrossRefGoogle Scholar
  15. 14.
    N. Jain, A. Kumar, S. Chauhan, and S. M. S. Chauhan, Tetrahedron, 61, 1015 (2005).CrossRefGoogle Scholar
  16. 15.
    Z.-B. Zhou, H. Matsumoto, and K. Tatsumi, Chem. Eur. J., 11, 752 (2005).CrossRefGoogle Scholar
  17. 16.
    G. W. Meindersma, A. J. G. Podt, and A. B. De Haan, Fuel Processing Technology, 87, 59 (2005).CrossRefGoogle Scholar
  18. 17.
    C. Baudequin, D. Bregeon, J. Levillain, F. Guillen, J.-C. Plaquevent, and A.-C. Gaumont, Tetrahedron: Asymmetry, 16, 3921 (2005).CrossRefGoogle Scholar
  19. 18.
    K. N. Marsh, J. A. Boxall, and R. Lichtenthaler, Fluid Phase Equilibria, 219, 93 (2004).CrossRefGoogle Scholar
  20. 19.
    C. F. Poole, J. Chromatogr. A, 1037, 49 (2004).CrossRefGoogle Scholar
  21. 20.
    P. Kubisa, Prog. Polym. Sci., 29, 3 (2004).CrossRefGoogle Scholar
  22. 21.
    C. E. Song, J. Chem. Soc., Chem. Commun., 1033 (2004).Google Scholar
  23. 22.
    P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis, VCH, Weinheim (2003).Google Scholar
  24. 23.
    M. A. Abraham and L. Moens, Clean Solvents: Alternative Media for Chemical Reactions and Processing, ACS Symposium Series 819, ACS, Washington DC (2002).Google Scholar
  25. 24.
    R. Sheldon, J. Chem. Soc., Chem. Commun., 2399 (2001).Google Scholar
  26. 25.
    P. Wasserscheid and W. Keim, Angew. Chem., Int. Ed. Engl., 39, 3772 (2000).CrossRefGoogle Scholar
  27. 26.
    R. D. Rogers and K. R. Seddon, Ionic Liquids: Industrial Application to Green Chemistry, ACS Symposium Series 818, ACS, Washington DC (2002).Google Scholar
  28. 27.
    T. Welton, Chem. Rev., 99, 2071 (1999).CrossRefGoogle Scholar
  29. 28.
    V. I. Parvulescu and C. Hardacre, Chem. Rev., 107, 2615 (2007).CrossRefGoogle Scholar
  30. 29.
    L. M. Kustov, T. V. Vasina, and V. A. Ksenofontov, Ros. Khim. Zh., 43, 13 (2004).Google Scholar
  31. 30.
    S. Chowdhury, R. S. Mohan, and J. L. Scott, Tetrahedron, 63, 2363 (2007).CrossRefGoogle Scholar
  32. 31.
    S. Nunomoto, Y. Kawakami, Y. Yamashita, H. Takeuchi, and S. Eguchi, J. Chem. Soc., Perkin Trans. 1, 111 (1990).Google Scholar
  33. 32.
    M. G. Reinecke, J. F. Sebastian, H. W. Johnson, Jnr., and C. Pyun, J. Org. Chem., 37, 3066 (1972).CrossRefGoogle Scholar
  34. 33.
    B. Cardillo, G. Casnati, A. Pochini, and A. Ricca, Tetrahedron, 23, 3771 (1967).CrossRefGoogle Scholar
  35. 34.
    R. Gompper, Usp. Khim., 36, 803 (1967).Google Scholar
  36. 36.
    S. A. Shevelev, Usp. Khim., 39, 1773 (1970).Google Scholar
  37. 37.
    G. Pirson and J. Songstad, J. Am. Chem. Soc., 89, 1817 (1967).Google Scholar
  38. 38.
    R. Gompper, Angew. Chem., Int. Ed. Engl., 15, 321 (1976).CrossRefGoogle Scholar
  39. 39.
    C. Reichardt, Green Chem., 7, 339 (2005).CrossRefGoogle Scholar
  40. 40.
    C. Reichardt, Chem. Rev., 94, 2319 (1994).CrossRefGoogle Scholar
  41. 41.
    J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser, and R. D. Rogers, J. Chem. Soc., Chem. Commun., 1765 (1998).Google Scholar
  42. 42.
    T. Nishida, Y. Tashiro, and M. Yamamoto, J. Fluorine Chem., 120, 135 (2003).CrossRefGoogle Scholar
  43. 43.
    C. S. Cho, H. S. Shim, H.-J. Choi, T.-J. Kim, and S. C. Shim, Bull. Korean Chem. Soc., 25, 441 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • G. Vavilina
    • 1
  • A. Zicmanis
    • 1
  • S. Drozdova
    • 1
  • P. Mekss
    • 1
  • M. Klavins
    • 1
  1. 1.Chemical FacultyLatvian UniversityRigaLatvia

Personalised recommendations