Advertisement

Chemistry of Heterocyclic Compounds

, Volume 43, Issue 11, pp 1440–1444 | Cite as

Synthesis and GCP II inhibitory activity of 4[4-(3-bromobenzyl)-5-hydroxyisoxazol-3-yl]benzoic acid heterocyclic analogs

  • M. TeusEmail author
  • A. Jirgensons
  • M. Dambrova
  • R. Mezhapuke
Article

Abstract

A method for the synthesis of analogs of glutamate carboxypeptidase II inhibitor 4-[4-(3-bromobenzyl)-5-hydroxyisoxazol-3-yl]benzoic acid-4-[4-(3-bromobenzyl-5-hydroxypyrazol-3-yl]-benzoic acid and 4-[4-(3-bromobenzyl)-3-hydroxyisoxazol-5-yl]benzoic acid from 4-(2-ethoxycarbonylacetyl)benzoic acid was developed. The GCP II inhibitory activity of all the compounds synthesized was determined. Substitution of the 5-hydroxyisoxazole group by the 5-hydroxypyrazole group led toa complete loss of activity, while replacement with the 3-hydroxyylisoxazole gave the compound with slightly less inhibitoer activity comparing with the initial compound.

Keywords

glutamatecarboxypeptidase II inhibitors 3-hydroxyisoxazole 5-hydroxyisoxazole 5-hydroxypyrazole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. B. Robinson, R. D. Blakely, R. Couto, and J. T. Boyle, J. Biol. Chem., 262, 14498 (1987).Google Scholar
  2. 2.
    B. Wroblewska, J. T. Wroblewski, S. Pshenichkin, A. Surin, S. E. Sullivan, and J. H. Neale, Neurochem., 69, 174 (1997).CrossRefGoogle Scholar
  3. 3.
    W. Danysz, C. G. Parsons, J. Bresink, and G. Quack. Drug News Perspect., 8, 261 (1995).Google Scholar
  4. 4.
    P. F. Jackson and B. S. Slusher. Curr. Med. Chem., 8, 949 (2001).Google Scholar
  5. 5.
    P. F. Jackon, K. L. Tays, K. M. Maclin, Y.-S. Ko, W. Li, D. Vitharana, T. Tsukamoto, D. Stoermer, X.-C. M. Lu, K. Wozniak, and B. S. Slusher. J. Med. Chem., 44, 4170 (2001).CrossRefGoogle Scholar
  6. 6.
    A. P. Kozikowski, J. Zhang, F. Nan, P. A. Petukhov, E. Grajkowska, J. T. Wroblewski, T. Yamamoto, T. Bzdega, B. Wroblewska, and J. H. Neale. J. Med. Chem., 47, 1729 (2004).CrossRefGoogle Scholar
  7. 7.
    P. Majer, P. F. Jackson, G. Delahanty, B. S. Grella, Y.-S. Ko, W. Li, Q. Liu, K. M. Maclin, J. Polakowa, K. A. Shaffer, D. Stoermer, D. Vitharna, E. Y. Wang, A. Zakrzewski. C. Rojas, B. S. Slusher, K. M. Wozniak, E. Burak, T. Limsakun, and T. Tsukamoto. J. Med. Chem., 46, 1989 (2003).CrossRefGoogle Scholar
  8. 8.
    D. Stoermer, Q. Liu, M. R. Hall, J. M. Flanary, A. G. Thomas, C. Rojas, B. S. Slusher, and T. Tsukamoto. Biorg. Med. Chem. Lett., 13, 2097 (2003).CrossRefGoogle Scholar
  9. 9.
    M. Nomura, T. Tanase, T. Ide, M. Tsunoda. M. Suzuki, H. Uchiki, K. Murakami, and H. Miyachi. J Med. Chem., 46, 3581 (2003).CrossRefGoogle Scholar
  10. 10.
    E. Falch, L. Brehm, I. Mikkelsen, T. N. Johansen, N. Skjaebaek, B. Nielsen, T. B. Stensbol, B. Ebert, and P. Krogagaard-Larsen. J. Med. Chem., 41, 2513 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • M. Teus
    • 1
    Email author
  • A. Jirgensons
    • 1
  • M. Dambrova
    • 1
  • R. Mezhapuke
    • 1
  1. 1.Latvian Institute of Organic SynthesisRigaLatvia

Personalised recommendations