Chemistry of Heterocyclic Compounds

, Volume 43, Issue 11, pp 1420–1425 | Cite as

Synthesis of pyrrolidines and tetrahydro-1H-azepines from 4-aryl-1-benzoyl(ethoxycarbonyl)methyl-1-methyl-1,2,3,6-tetrahydropyridinium halides

  • S. A. SoldatovaEmail author
  • G. S. Gimranova
  • Zh. A. Mamyrbekova
  • K. B. Polyanskii
  • S. V. Akbulatov
  • A. T. Soldatenkov


4-Aryl-1,2,3,6-tetrahydropyridinium quaternary salts which have a benzoylmethyl or ethoxycarbonylmethyl group on atom N-1 generate N-ylides when heated in the presence of NaH and they can rearrange in situ with contraction or expansion of the six-membered heterocycle to give substituted pyrrolidines (as a result of a [2,3]-sigmatropic rearrangement) or 1H-tetrahydroazepine derivatives (via Stevens rearrangement). The presence of an aryl substituent at position C-4 in the tetrahydropyridine ring allows to avoid the formation of elimination products and changes the direction of the reaction towards the preparation of the tetrahydroazepines.


4-aryl-1-benzoyl(ethoxycarbonyl)methyl-1,2,3,6-tetrahydropyridinium halides N-ylides pyrollidines tetrahydro-1H-azepines 1,2-shift sigmatropic rearrangement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Mageswaran, W. D. Ollis, and I. O. Sutherland, J. Chem. Soc., Chem. Commun., 656 (1973).Google Scholar
  2. 2.
    S. Mageswaran, W. D. Ollis, and I. O. Sutherland, J. Chem. Soc., Perkin Trans. 1, 1953 (1981).Google Scholar
  3. 3.
    S. J. Neeson and P. J. Stevenson, Tetrahedron Lett., 29, 3993 (1988).CrossRefGoogle Scholar
  4. 4.
    B. Burns, B. Coates, S. Neeson, and P. J. Stevenson, Tetrahedron Lett., 31, 4351 (1990).CrossRefGoogle Scholar
  5. 5.
    D. J. Hyett, J. B. Sweeney, A. Tavassoli, and J. F. Hayes, Tetrahedron Lett,, 38, 8283 (1997).CrossRefGoogle Scholar
  6. 6.
    J. B. Sweeney, A. Tavassoli, and J. F. Hayes, Synlett, 1208 (2000).Google Scholar
  7. 7.
    J. B. Sweeney, A. Tavassoli, N. B. Carter, and J. F. Hayes, Tetrahedron, 58, 10113 (2002).CrossRefGoogle Scholar
  8. 8.
    A. T. Soldatenkov, K. B. Polyanskii, and Zh. A. Mamyrbekova, Zh. Org. Khim., 38, 480 (2002).Google Scholar
  9. 9.
    A. T. Soldatenkov, A. V. Temesgen, K. B. Polyanskii, S. A. Soldatova, N. M. Kolyadina, N. I. Golovtsov, and N. D. Sergeeva, Khim. Geterotsikl. Soedin., 552 (2003). [Chem. Heterocycl. Comp., 39, 471 (2003)].Google Scholar
  10. 10.
    S. A. Soldatova, S. V. Akbulatov, G. S. Gimranova, Yu. O. Rudakov, K. B. Polyanskii, and A. T. Soldatenkov, Khim. Geterotsikl. Soedin., 790 (2005). [Chem. Heterocycl. Comp., 41, 681 (2005)].Google Scholar
  11. 11.
    S. Smith Jr., V. Elango, and M. Shamma, J. Org. Chem., 49, 581 (1984).CrossRefGoogle Scholar
  12. 12.
    I. Zugravescu and M. Petrovanu, N-Ylide Chemistry, McGraw-Hill, New York (1976).Google Scholar
  13. 13.
    O. A. Reutov, A. L. Kurts, and K. P. Butin, Organic Chemistry [in Russian], Science Laboratory, Binom Press, Moscow (2004), Chap. 4.Google Scholar
  14. 14.
    C. J. Schmidle and R. C. Mansfield, J. Amer. Chem. Soc., 76, 425 (1956).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • S. A. Soldatova
    • 1
    Email author
  • G. S. Gimranova
    • 1
  • Zh. A. Mamyrbekova
    • 1
  • K. B. Polyanskii
    • 1
  • S. V. Akbulatov
    • 1
  • A. T. Soldatenkov
    • 1
  1. 1.People’s Friendship University of RussiaMoscow

Personalised recommendations