Advertisement

Chemistry of Heterocyclic Compounds

, Volume 42, Issue 12, pp 1568–1573 | Cite as

General access to a novel class of silyl heterocycles

  • A. Degl’Innocenti
  • A. Capperucci
  • I. Malesci
  • M. Acciai
  • G. Castagnoli
Article

Abstract

2-Trimethylsilyl-substituted five-membered heterocycles can be accessed through the reaction of bromo(methoxy)methyltrimethylsilane with 1,2-dithiols, 1,2-mercapto alcohols, 1,2-mercapto amines, and 1,2-hydroxy amines, leading to the formation of several 2-silylated 1,3-dithiolanes,-oxathiolanes,-thiazolidines, and-oxazolidines.

Keywords

dithiolanes organosilanes oxathiolanes oxazolidines silyl heterocycles thiazolidines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. S. Shiner, T. Tsunoda, B. A. Goodman, S. Ingham, S. Lee, and E. Vorndam, J. Am. Chem. Soc., 111, 1381 (1989).CrossRefGoogle Scholar
  2. 2.
    R. A. Aitken, S. D. McGill, and L. A. Power, ARKIVOC, 2006, VII, 292.Google Scholar
  3. 3.
    G. W. Gokel, W. Gerdes, D. E. Miles, and J. M. Hufnal, G. A. Zerby, Tetrahedron Lett., 20, 3375 (1979).CrossRefGoogle Scholar
  4. 4.
    A. R. Katritzky, Z. Yang, and J. N. Lam, J. Org. Chem., 56, 2143 (1991).CrossRefGoogle Scholar
  5. 5.
    A. R. Katritzky, H. Lang, Z. Wang, and Z. Lie, J. Org. Chem., 61, 7551 (1996).CrossRefGoogle Scholar
  6. 6.
    A. R. Katritzky, D. Feng, and H. Lang, J. Org. Chem., 62, 706 (1997).CrossRefGoogle Scholar
  7. 7.
    A. R. Katritzky, Z. Wang, H. Lang, and D. Feng, J. Org. Chem., 62, 4125 (1997).CrossRefGoogle Scholar
  8. 8.
    A. R. Katritzky, D. Feng, and M. Qi, J. Org. Chem., 63, 1473 (1998).CrossRefGoogle Scholar
  9. 9.
    R. A. Aitken and A. W. Thomas, Advances in Heterocyclic Chemistry, Acad. Press, 2001, vol. 79, p. 89, and references cited therein.CrossRefGoogle Scholar
  10. 10.
    T. A. Hase, Umpoled Synthons: A Survey of Sources and Uses in Synthesis, Wiley Intersci., New York, 1987.Google Scholar
  11. 11.
    R. E. Gawley, S. A. Campagna, M. Santiago, and T. Ren, Tetrahedron: Asymmetry, 13, 29 (2002).CrossRefGoogle Scholar
  12. 12.
    C. Gaul, K. Scharer, and D. Seebach, J. Org. Chem., 66, 3059 (2001).CrossRefGoogle Scholar
  13. 13.
    C. Gaul and D. Seebach, Helv. Chim. Acta, 85, 772 (2002).CrossRefGoogle Scholar
  14. 14.
    N. Kise, T. Urai, and J.-C. Yoshida, Tetrahedron: Asymmetry, 9, 3125 (1998).CrossRefGoogle Scholar
  15. 15.
    L. Colombo, M. Di Giacomo, G. Brusotti, and G. Delogu, Tetrahedron Lett., 35, 2063 (1994).CrossRefGoogle Scholar
  16. 16.
    L. Colombo and M. Di Giacomo, Current Trends in Organic Synthesis, 171 (1999).Google Scholar
  17. 17.
    L. Wang, S. Nakamura, and T. Toru, Org. Biomol. Chem., 2, 2168 (2004).CrossRefGoogle Scholar
  18. 18.
    L. Wang, S. Nakamura, Y. Ito, and T. Toru, Tetrahedron: Asymmetry, 15, 3059 (2004).CrossRefGoogle Scholar
  19. 19.
    R. E. Gawley, Q. Zhang, and A. T. McPhail, Tetrahedron: Asymmetry, 11, 2093 (2000).CrossRefGoogle Scholar
  20. 20.
    A. I. Meyers, P. D. Edwards, W. F. Rieker, and T. R. Bailey, J. Am. Chem. Soc., 106, 3270 (1984).CrossRefGoogle Scholar
  21. 21.
    D. Seebach, Angew. Chem., Int. Ed. Engl., 8, 639 (1969).CrossRefGoogle Scholar
  22. 22.
    D. Seebach and E. J. Corey, J. Org. Chem., 40, 231 (1975).CrossRefGoogle Scholar
  23. 23.
    B.-T. Gröbel and D. Seebach, Synthesis, 357 (1977).Google Scholar
  24. 24.
    N. H. Andersen, D. A. Mc Crae, D. B. Grotjahn, S. Y. Gabhe, L. J. Theodore, R. M. Ippolito, and T. K. Sarkar, Tetrahedron, 37, 4068 (1981).CrossRefGoogle Scholar
  25. 25.
    P. C. B. Page, M. B. van Niel, and J. C. Prodger, Tetrahedron, 45, 7643 (1989).CrossRefGoogle Scholar
  26. 26.
    E. L. Eliel, A. A. Hartmann, and A. G. Abatjoglou, J. Am. Chem. Soc., 96, 1807 (1974), and references cited therein.CrossRefGoogle Scholar
  27. 27.
    A. G. Abatjoglou, E. L. Eliel, and L. F. Kuyper, J. Am. Chem. Soc., 99, 8262 (1977), and references cited therein.CrossRefGoogle Scholar
  28. 28.
    P. J. Kocieñski, Protecting groups, Georg Thieme, 1994, 3rd ed.Google Scholar
  29. 29.
    E. Burghardt, J. Sulfur Chem., 26, 411 (2005), and references cited therein.CrossRefGoogle Scholar
  30. 30.
    T. Oida, S. Tanimoto et al., J. Chem Soc., Perkin Trans. 1, 1715 (1986).Google Scholar
  31. 31.
    S. R. Wilson, G. M. Georgiadis, H. N. Khatri, and J. E. Bartmess, J. Am. Chem. Soc., 102, 3577 (1980).CrossRefGoogle Scholar
  32. 32.
    S. R. Wilson, P. Caldera, and M. A. Jester, J. Org. Chem., 47, 3319 (1982).CrossRefGoogle Scholar
  33. 33.
    P. C. B. Page, M. J. McKenzie, and D. R. Buckle, J. Chem. Soc., Perkin Trans. 1, 2673 (1995).Google Scholar
  34. 34.
    P. C. B. Page, M. Purdie, and D. Lathbury, Tetrahedron Lett., 37, 8929 (1996).CrossRefGoogle Scholar
  35. 35.
    V. K. Aggarwal, A. Thomas, and S. Schade, Tetrahedron, 53, 16213 (1997).Google Scholar
  36. 36.
    V. K. Aggarwal, S. Schade, and H. Adams, J. Org. Chem., 62, 1139 (1997).CrossRefGoogle Scholar
  37. 37.
    A. Degl’Innocenti, S. Pollicino, and A. Capperucci, Chem. Commun. (2006); DOI: 10.1039/b608816n.Google Scholar
  38. 38.
    J.A. Soderquist and E. I. Miranda, J. Am. Chem. Soc., 114, 10078 (1992).Google Scholar
  39. 39.
    M. L. Christiansen, T. Benneche, and K. Undheim, Acta Chem. Scand., B41, 536 (1987).CrossRefGoogle Scholar
  40. 40.
    S. Shimizo, M. Ogata, Tetrahedron, 45, 637 (1989).CrossRefGoogle Scholar
  41. 41.
    A. Capperucci, G. Castagnoli, A. Degl’Innocenti, I. Malesci, and T. Nocentini, Phosphorous, Sulfur, Silicon, 180, 1297 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. Degl’Innocenti
    • 1
  • A. Capperucci
    • 1
  • I. Malesci
    • 1
  • M. Acciai
    • 1
  • G. Castagnoli
    • 1
  1. 1.Department of Organic Chemistry and HBLUniversity of FlorenceSesto FiorentinoItaly

Personalised recommendations