Advertisement

Chemistry of Heterocyclic Compounds

, Volume 42, Issue 10, pp 1267–1290 | Cite as

Molecular modeling of the mechanisms of thermolysis of nitramino-1,2,4-triazoles

  • V. L. Korolev
  • T. V. Petukhova
  • E. A. Bakhmatova
  • T. S. Pivina
  • A. B. Sheremetev
Article

Abstract

Modeling of the probable mechanisms of the thermolysis of C-and N-nitramino-1,2,4-triazoles has been carried out by methods of mathematical chemistry. It was established that the formation is possible of a more diverse spectrum of products in their destruction than was previously recorded by different experimental methods. Subsequent assessment of the thermochemical preference for pathways of decomposition of the compounds was carried out by the density functional method in the B3LYP/6-31G* approach. It was determined that the thermal destruction of C-and N-nitramino-substituted polynitrogen heterocycles, capable of tautomeric conversion, was most probably through the thermochemically least stable nitramine form. Thermal decomposition of the considered tautomers is preferred at the NNO2 fragment and not at the triazole ring. The direction of the structural stabilization of the investigated compounds has been clarified by comparison of the geometric, electronic, and thermochemical characteristics of C-NNO2-and N-NNO2-substituted 1,2,4-triazoles.

Keywords

nitramino-1,2,4-triazoles structure-property interconnections quantum-chemical calculations density functional method modeling of thermolysis mechanisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. B. Manelis, G. M. Nazin, Yu. I. Rubtsov, and V. A. Strunin, Thermal Decomposition and Combustion of Explosive Substances and Gunpowder [in Russian], Nauka, Moscow (1996).Google Scholar
  2. 2.
    L. P. Smirnov, Usp. Khim., 73, 1210 (2004).Google Scholar
  3. 3.
    L. P. Smirnov, in: Energetic Condensed Systems. All-Russian Conference,2–12 November 2004, Chernogolovka, 2004, p. 72.Google Scholar
  4. 4.
    V. F. Sopin and G. A. Marchenko, in: Contemporary Problems of Technical Chemistry. All-Russian Conference, 21–22 November 2003, Kazan 2003, p. 40.Google Scholar
  5. 5.
    P. Politzer and J. S. Murray, in: P. L. Marinkas (editor), Organic Energetic Compounds, Nova Sci. Publ. Inc., New York (1996), p. 1.Google Scholar
  6. 6.
    G. A. Olah and R. Squire, in: G. A. Olah (editor), Chemistry of Energetic Materials, Acad. Press, San Diego (1991), p. 212.Google Scholar
  7. 7.
    J. Kohler and R. Meyer, Explosives, 4_rev. and extended ed., VCH, Weinheim (1993), p. 457.Google Scholar
  8. 8.
    P. L. Marinkas in: P. L. Marinkas (editor), Organic Energetic Compounds, Nova Sci. Publ. Inc., New York (1996), p. 425.Google Scholar
  9. 9.
    P. Politzer, P. Lane, and M. C. Concha in: P. Politzer and J. S. Murray (editors), Theoretical and Computational Chemistry 12 (Energetic Materials, Pt I), Elsevier, London, New York (2003), p. 247.Google Scholar
  10. 10.
    A. A. Porollo, D. E. Lushnikov, T. S. Pivina, V. P. Ivshin, J. Mol. Struct. (THEOCHEM), 391, 117 (1997).CrossRefGoogle Scholar
  11. 11.
    A. A. Porollo, D. E. Lushnikov, T. S. Pivina, V. P. Ivshin, and N. S. Zefirov, Izv. Akad. Nauk, Ser. Khim., 1869 (1999).Google Scholar
  12. 12.
    A. A. Porollo, T. V. Petukhova, V. P. Ivshin, T. S. Pivina, and D. E. Lushnikov, in: Proc. 30th Int. Ann. Conf. ICT. Energetic Materials: Reactions of Propellants, Explosives and Pyrotechnics, Karlsruhe, Germany 1999, p. 15/1.Google Scholar
  13. 13.
    T. S. Pivina, A. A. Porollo, T. V. Petukhova, and V. P. Ivshin, in: Proc. 26th Int. Pyrotechnics Seminar, Nanjing, China, 1999, p. 438.Google Scholar
  14. 14.
    T. S. Pivina, A. A. Porollo, T. V. Petukhova, and V. P. Ivshin, in: Proc. 5th Int. Symp. Special Topics in Chemical Propulsion (5-ISICP), Italy, 2000, p. 343.Google Scholar
  15. 15.
    A. A. Porollo, T. V. Petukhova, V. P. Ivshin, T. S. Ivshina, and E. A. Smolenskii, in: Abstracts 2nd All-Russian Conf. on Molecular Modeling, Moscow, 2001, p. 94.Google Scholar
  16. 16.
    A. A. Porollo, T. V. Petukhova, V. P. Ivshin, T. S. Pivina, B. L. Korsunskii, and O. Golovanov, in: Proc. 32nd Int. Ann. Conf. ICT, Energetic Materials: Reactions of Propellants, Explosives and Pyrotechnics, Karlsruhe, Germany, 2001, p. 87/1.Google Scholar
  17. 17.
    T. V. Petukhova, A. A. Porollo, V. L. Korolev, V. P. Ivshin, Y. N. Surikova, and T. S. Pivina, in: Proc. 33rd Int. Ann. Conf. ICT, Energetic Materials: Reactions of Propellants, Explosives and Pyrotechnics, Karlsruhe, Germany, 2002, p. 60/1.Google Scholar
  18. 18.
    V. L. Korolev, T. V. Petukhova, T. S. Pivina, A. A. Porollo, A. B. Sheremetev, K. Yu. Suponitskii, and V. P. Ivshin, Izv. Akad. Nauk, Ser. Khim., 1338 (2006).Google Scholar
  19. 19.
    M. S. Pevzner, Ros. Khim. Zh., 41, 73 (1997).Google Scholar
  20. 20.
    A. B. Sheremetev, Ros. Khim. Zh., 41, 43 (1997).Google Scholar
  21. 21.
    H. H. Licht, S. Braun, M. Wanders, and H. Ritter, in: Proc. 29th Int. Ann. Conf. ICT, Energetic Materials: Reactions of Propellants, Explosives and Pyrotechnics, Karlsruhe, Germany, 1998, p. 47/1.Google Scholar
  22. 22.
    V. L. Korolev, T. V. Petukhova, T. S. Pivina, A. B. Sheremetev, A. E. Miroshnichenko, and V. P. Ivshin, Khim. Geterotsikl. Soedin., 1817 (2004). [Chem. Heterocycl. Comp., 40, 1568 (2004).Google Scholar
  23. 23.
    A. M. Astachov, V. A. Revenko, and E. S. Buka, in: Proc. 7th Seminar on New Trends in Research of Energetic Materials, Pardubice, Czech Republic, 2004, p. 424.Google Scholar
  24. 24.
    V. A. Myasnikov, V. A. Vyazkov, I. L. Yudin, O. P. Shitov, and V. A. Tartakovskii, Izv. Akad. Nauk, Ser. Khim., 1239 (1991).Google Scholar
  25. 25.
    V. A. Tartakovsky, in: Decomposition, Combustion, and Detonation Chemistry of Energetic Materials, Symposium, November 27–30, 1995, Boston, Mass., USA. T. B. Brill, T. P. Russell, W. C. Tao, and R. B. Wardle (editors), Materials Research Society Symposium Proceedings, Vol. 418, p. 15.Google Scholar
  26. 26.
    A. Gao, A. L. Reingold, and T. B. Brill, Propellants, Explosives, Pyrotechnics, 16, 97 (1991).CrossRefGoogle Scholar
  27. 27.
    T. B. Brill and T. B. Patil, Thermochim. Acta, 235, 225 (1994).CrossRefGoogle Scholar
  28. 28.
    A. M. Astakhov, Dissertation for Candidate of Chemical Sciences, Siberian State Technological University, Krasnoyarsk, 1999, 118 pp.Google Scholar
  29. 29.
    R. S. Stepanov, A. M. Astachov, and L. A. Kruglova, in: Proc. 34th Int. Ann. Conf. ICT, Energetic Materials: Reactions of Propellants, Explosives and Pyrotechnics, Karlsruhe, Germany, 2003, p. 53/1.Google Scholar
  30. 30.
    A. A. Nefedov, Dissertation for Candidate of Chemical Sciences, Siberian State Technological University, Krasnoyarsk, 2004, 150 pp.Google Scholar
  31. 31.
    E. V. Sokerina, D. E. Lushnikov, T. S. Pivina, A. A. Porollo, and V. P. Ivshin, in: Proc. 21st Int. Pyrotechnics Seminar, Moscow, 1995, p. 849.Google Scholar
  32. 32.
    A. A. Porollo, Dissertation for Candidate of Chemical Sciences, Mari State University, Ioshkar-Ola, 1999, 135 pp.Google Scholar
  33. 33.
    T. V. Petukhova, Dissertation for Candidate of Chemical Sciences, Mari State University, Ioshkar-Ola, 2004, 136 pp.Google Scholar
  34. 34.
    W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley-VCH, Weinheim (2001), 300 pp.Google Scholar
  35. 35.
    T. Clark, A Handbook of Computational Chemistry, J. Wiley & Sons, New York (1985).Google Scholar
  36. 36.
    Gaussian 98 Program Set, Center for Computer Provision for Chemical Investigations, Russian Academy of Sciences.Google Scholar
  37. 37.
    E. D. Raczynska, R. Kosinska, B. Osmialowski, and R. Gawinecki, Chem. Rev., 105, 3561 (2005).CrossRefGoogle Scholar
  38. 38.
    J. Elguero, A. R. Katritzky, and O. V. Denisenko, Adv. Heterocycl. Chem., 76, 1 (2001).CrossRefGoogle Scholar
  39. 39.
    V. I. Minkin, A. D. Garnovskii, J. Elguero, A. R. Katritzky, and O. V. Denisenko, Adv. Heterocycl. Chem., 76, 157 (2001).Google Scholar
  40. 40.
    I. Shcherbakova, J. Elguero, and A. R. Katritzky, Adv. Heterocycl. Chem., 77, 51 (2001).Google Scholar
  41. 41.
    V. G. Avakyan and O. V. Fateev, Izv. Akad. Nauk, Ser. Khim., 100 (1993).Google Scholar
  42. 42.
    A. L. Fridman, V. P. Ivshin, and S. S. Novikov, Usp. Khim., 38, 1448 (1969).Google Scholar
  43. 43.
    G. Foiera (editor), Chemistry of Nitro and Nitroso Groups [Russian translation], Mir, Moscow (1972).Google Scholar
  44. 44.
    S. S. Novikov, V. V. Sevost’yanova, and V. A. Shlyapochnikov, Chemistry of Aliphatic and Alicyclic Nitro Compounds [in Russian], Khimiya, Moscow (1974).Google Scholar
  45. 45.
    Yu. A. Orlova, Chemistry and Technology of High Explosives [in Russian], Khimiya, Leningrad (1980).Google Scholar
  46. 46.
    T. P. Kofman, G. Yu. Kartseva, and M. B. Shcherbinin, Zh. Org. Khim., 38, 1397 (2002).Google Scholar
  47. 47.
    H. H. Licht and H. Ritter, J. Energ. Mat., 12, 223 (1994).Google Scholar
  48. 48.
    J. E. De Vries and E. St. Clair Gantz, J. Am. Chem. Soc., 1008 (1954).Google Scholar
  49. 49.
    Zh. N. Fidler, M. G. Luchina, and V. A. Lopyrev, Zh. Org. Khim., 9, 1205 (1973).Google Scholar
  50. 50.
    R. A. Henry, J. Am. Chem. Soc., 72, 5343 (1950).CrossRefGoogle Scholar
  51. 51.
    G. I. Chipen, V. Ya. Grinshtein, and R. P. Preiman, Zh. Obshch. Khim., 32, 454 (1962).Google Scholar
  52. 52.
    M. S. Pevzner, T. N. Kulibabina, N. A. Povarova, and L. V. Kilina, Khim. Geterotsikl. Soedin., 1132 (1979). [Chem. Heterocycl. Comp., 15, 929 (1979)].Google Scholar
  53. 53.
    T. G. Bonner and J. C. Lockhart, J. Chem. Soc., 3858 (1958).Google Scholar
  54. 54.
    M. S. Pevzner, N. V. Gladkova, and T. A. Kravchenko, Zh. Org. Khim., 32, 1230 (1996).Google Scholar
  55. 55.
    A. M. Astakhov, A. D. Vasil’ev, M. S. Molokeev, V. A. Revenko, and R. S. Stepanov, Zh. Org. Khim., 41, 928 (2005).Google Scholar
  56. 56.
    P. Politzer, M. E. Grice, and J. M. Seminario, J. Quantum Chem., 61, 389 (1997).CrossRefGoogle Scholar
  57. 57.
    A. Gao, Y. Oyumi, and T. V. Brill, Combust Flame, 83, 345 (1991).CrossRefGoogle Scholar
  58. 58.
    T. V. Brill, Prog. Energy Combust. Sci., 18, 91 (1992).CrossRefGoogle Scholar
  59. 59.
    T. V. Brill and H. Ramanathan, Combust Flame, 122, 165 (2000).CrossRefGoogle Scholar
  60. 60.
    A. D. Vasiliev, A. M. Astachov, R. S. Stepanov, and S. D. Kirik, Acta Crystallogr., C55, 830 (1999).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. L. Korolev
    • 1
  • T. V. Petukhova
    • 2
  • E. A. Bakhmatova
    • 1
  • T. S. Pivina
    • 1
  • A. B. Sheremetev
    • 1
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscow
  2. 2.Mari State UniversityIoshkar-OlaRussia

Personalised recommendations