Advertisement

Chemistry of Heterocyclic Compounds

, Volume 42, Issue 6, pp 701–718 | Cite as

Traditional and modern approaches to the synthesis of quinoline systems by the Skraup and Doebner-Miller methods. (Review)

  • S. A. Yamashkin
  • E. A. Oreshkina
Article

Abstract

Recent data on classical and modified methods for the synthesis of quinoline systems by the Skraup and Doebner-Miller reactions, not included in reviews on heterocycles, are discussed.

Keywords

quinoline Doebner-Miller reaction Skraup reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. G. Glushkov, I. B. Levshin, N. B. Marchenko, and E. N. Padeiskaya, Khim.-Farm. Zh., 18, 1048 (1984).Google Scholar
  2. 2.
    R. D. Chambers, D. Holling, G. Sandford, H. Puschmann, and J. A. K. Howard, J. Fluor. Chem., 117, 99 (2002).CrossRefGoogle Scholar
  3. 3.
    A. Raadt, H. Griengl, M. Petsch, P. Plachota, N. Schoo, H. Weber, G. Brauneg, I. Kopper, M. Kreiner, and A. Zeiser, Tetrahedron: Asymmetry, 7, 473 (1996).CrossRefGoogle Scholar
  4. 4.
    M. Z. Hoemann, G. Kumaravel, R. L. Xie, R. F. Rossi, S. Meyer, A. Sidhu, G. D. Cuny, and J. R. Hauske, Bioorg. Med. Chem. Lett., 10, 2675 (2000).CrossRefGoogle Scholar
  5. 5.
    L. A. Kayukova and K. D. Pramyav, Khim.-Farm. Zh., 34, No. 1, 15 (2000).Google Scholar
  6. 6.
    R. C. Storr, P. M. O’Neill, and B. K. Park, Tetrahedron, 54, 4615 (1998).CrossRefGoogle Scholar
  7. 7.
    S. Clavier, O. Rist, S. Hansen, L.-O. Gerlach, T. Hogberg, and J. Bergman, Org. Biomolec. Chem., 1, 4248 (2003).CrossRefGoogle Scholar
  8. 8.
    V. L. Kovaleva, E. V. Shilova, and V. V. Poroikov, Khim.-Farm. Zh., 37, No. 6, 16 (2003).Google Scholar
  9. 9.
    Z. Skraup, Berichte, 13, 2086 (1880).Google Scholar
  10. 10.
    O. Doebner and W. M. Miller, Berichte, 16, 2464 (1883).Google Scholar
  11. 11.
    R. Elderfield (editor), Heterocyclic Compounds [Russian translation], Izd. Inostr. Lit., Moscow (1955), Vol. 4.Google Scholar
  12. 12.
    K. H. Park, H. S. Joo, K. I. Ahn, and K. Jun, Tetrahedron Lett., 36, 5943 (1995).CrossRefGoogle Scholar
  13. 13.
    O. Schindler and W. Michaelis, Helv. Chim. Acta, 53, 776 (1970).CrossRefGoogle Scholar
  14. 14.
    T. Gilchrist, Chemistry of Heterocyclic Compounds [Russian translation], Mir, Moscow (1996), p. 186.Google Scholar
  15. 15.
    A. Koppl and H. G. Alt, J. Mol. Catal., A: Chem., 154, 45 (2000).CrossRefGoogle Scholar
  16. 16.
    H. Yamaguchi, Jpn. Patent 11322718; Chem. Abstr., 132, 11823 (2000).Google Scholar
  17. 17.
    R. H. F. Manske and M. Kulka, in: Organic Reactions [Russian translation], Vol. 7, Izd. Inostr. Lit., Moscow (1956), p. 100.Google Scholar
  18. 18.
    A. Surrey, in: Reference Book of Organic Reactions. Name Reactions in Organic Chemistry [Russian translation], Goskhimizdat, Moscow (1962), pp. 111, 231.Google Scholar
  19. 19.
    D. Barton and W. D. Ollis, Comprehensive Organic Chemistry [Russian translation], Vol. 8, Khimiya, Moscow (1985), p. 196.Google Scholar
  20. 20.
    B. I. Ardashev, Usp. Khim., 23, No. 4, 45 (1954).Google Scholar
  21. 21.
    I. I. Oleynik, J. Fluor. Chem., 91, 25 (1998).CrossRefGoogle Scholar
  22. 22.
    H. Gershon, D. D. Clarke, J. J. McMahon, and M. Gershon, Monatsh. Chem., 133, 1325 (2002).Google Scholar
  23. 23.
    K. S. Sharma, S. Kumari, and R. P. Singh, Synthesis, 316 (1981).Google Scholar
  24. 24.
    J. D. Ringgenberg, T. K. Jones, and J. P. Edwards, Tetrahedron Lett., 39, 5139 (1998).CrossRefGoogle Scholar
  25. 25.
    M. Buckley, N. Cooper, H. J. Dyke, F. P. Galleway, L. Gowers, A. F. Haughan, H. J. Kendall, C. Lowe, R. Maxey, J. G. Montana, R. Naylor, J. Oxford, J. C. Peake, C. L. Picken, K. A. Runcie, V. Sabin, A. Sharpe, and J. B. H. Warneck, Bioorg. Med. Chem. Lett., 12, 1613 (2002).CrossRefGoogle Scholar
  26. 26.
    M. Bitlah, G. M. Buckley, N. Cooper, H. J. Dyke, R. Egan, A. Ganguly, L. Gowers, A. F. Haughan, H. J. Kendall, C. Lowe, M. Minnicozzi, J. G. Montana, J. Oxford, J. C. Peake, C. L. Picken, J. J. Piwinski, R. Naylor, V. Sabin, M.-Y. Shih, and J. B. H. Warneck, Bioorg. Med. Chem. Lett., 12, 1617 (2002).CrossRefGoogle Scholar
  27. 27.
    I. N. Gracheva and A. I. Tochilkin, Khim. Geterotsikl. Soedin., 366 (1980).Google Scholar
  28. 28.
    D. D. Clarke, H. Gershon, and J. J. McMahon, Monatsh. Chem., 131, 795 (2000).Google Scholar
  29. 29.
    H. Gershon, D. D. Clarke, and M. Gershon, Monatsh. Chem., 133, 1437 (2002).Google Scholar
  30. 30.
    N. S. Prostakov, A. P. Krapivko, A. T. Soldatenkov, and N. D. Sergeeva, Khim. Geterotsikl. Soedin., 677 (1980).Google Scholar
  31. 31.
    V. V. Antonova, N. I. Kitaeva, A. M. Bespalova, and V. K. Pomonenkov, in: Basic Organic Synthesis and Petrochemistry [in Russian], Yaroslavl (1984), No. 20, p. 99.Google Scholar
  32. 32.
    P. Sanna, A. Carta, and G. Paglietti, Heterocycles, 53, 423 (2000).Google Scholar
  33. 33.
    Q. Han, H.-J. Lu, M.-C. Wang, and W.-Q. Shi, Zhengzhou Daxue Xuebao, Ziran Kexueban, 2, 80 (2000); Chem. Abstr., 134, 4842 (2001).Google Scholar
  34. 34.
    K. Kamienska-Trela, L. Kania, M. Bechcicka, and L. Kaczmarek, J. Mol. Struct., 661–662, 209 (2003).CrossRefGoogle Scholar
  35. 35.
    M. H. Palmer, J. Chem. Soc., 3645 (1962).Google Scholar
  36. 36.
    J. Bourguignon, V. Lobregat, G. Queguiner, G. Dupas, P. Charpentier, and V. Levacher, Tetrahedron Lett., 39, 4013 (1998).CrossRefGoogle Scholar
  37. 37.
    R. A. Blatchly and M. A. Greeley, Heterocycles, 29, 2345 (1989).CrossRefGoogle Scholar
  38. 38.
    M. H. Lambourne, J. Chem. Soc., 119, 1294 (1922).Google Scholar
  39. 39.
    C. N. Carrigan, C. S. Esslinger, R. D. Bartlett, R. J. Bridges, and C. M. Thompson, Bioorg. Med. Chem. Lett., 9, 2607 (1999).CrossRefGoogle Scholar
  40. 40.
    X.-G. Li, X. Cheng, J.-A. Ma, and Q.-L. Zhou, J. Organometal. Chem., 640, 65 (2001).CrossRefGoogle Scholar
  41. 41.
    C. M. Leir, J. Org. Chem., 42, 911 (1977).CrossRefGoogle Scholar
  42. 42.
    T. Morimitsu, Jpn. Patent 2000281651; Chem. Abstr., 133, 266742 (2000).Google Scholar
  43. 43.
    M. Matsugi, F. Tabusa, and J. Minamikawa, Tetrahedron Lett., 41, 8523 (2000).CrossRefGoogle Scholar
  44. 44.
    X.-G. Li, X. Cheng, and Q.-L. Zhou, Synth. Commun., 32, 2477 (2002).CrossRefGoogle Scholar
  45. 45.
    M. Palucki, D. L. Hughes, N. Yasuda, C. Yang, and P. J. Reider, Tetrahedron Lett., 42, 6811 (2001).CrossRefGoogle Scholar
  46. 46.
    H. Z. Syeda Huma, R. Haider, S. S. Kalra, J. Das, and J. Iqbal, Tetrahedron Lett., 43, 6485 (2002).CrossRefGoogle Scholar
  47. 47.
    Z. Wrobel, Tetrahedron, 54, 2607 (1998).CrossRefGoogle Scholar
  48. 48.
    I. Ganesh and B. M. Reddy, J. Mol. Catal., A: Chem., 151, 289 (2000).CrossRefGoogle Scholar
  49. 49.
    C. S. Cho, J. S. Kim, B. H. Oh, T.-J. Kim, S. C. Shim, and N. S. Yoon, Tetrahedron, 56, 7747 (2000).CrossRefGoogle Scholar
  50. 50.
    R. R. Eva, US Patent 6103904; Chem. Abstr., 133, 165421 (2000).Google Scholar
  51. 51.
    Z. G. Song, M. Mertzman, and D. L. Hughu, J. Heterocycl. Chem., 30, 17 (1993).Google Scholar
  52. 52.
    G. Guanti, S. Perrozzi, and R. Riva, Tetrahedron: Asymmetry, 13, 2703 (2002).CrossRefGoogle Scholar
  53. 53.
    S. Perrozzi, R. Riva, and G. I. Guanti, Tetrahedron: Asymmetry, 9, 3923 (1998).CrossRefGoogle Scholar
  54. 54.
    M. R. Heinrich, W. Steglich, M. G. Banwell, and Y. Kashman, Tetrahedron, 59, 9239 (2003).CrossRefGoogle Scholar
  55. 55.
    M. A. Bray, M. Gerspacher, A. von Sprecher, S. Kimmel, A. Beck, N. Subramanian, U. Niederhauser, G. P. Anderson, and H. Wiestner, Bioorg. Med. Chem. Lett., 8, 965 (1998).CrossRefGoogle Scholar
  56. 56.
    M. R. Heinrich and W. Steglich, Tetrahedron, 59, 9231 (2003).CrossRefGoogle Scholar
  57. 57.
    R. E. Armer, C. J. Dutton, S. D. W. Greenwood, J. Shaw, J. S. Barlow, D. H. J. Greenway, N. Lad, A. P. Thompson, K.-W. Thong, I. Tommasini, and N. Chopra, Bioorg. Med. Chem. Lett., 9, 2425 (1999).CrossRefGoogle Scholar
  58. 58.
    Y. Qin, Chem. Reagents, 9, 115 (1987); Ref. Zh. Khim., 1Zh, 281 (1988).Google Scholar
  59. 59.
    H. Y. Choi, B. S. Lee, D. Y. Chi, and D. J. Kim, Heterocycles, 48, 2647 (1998).Google Scholar
  60. 60.
    Y. Ogata, A. Kawasaki, and S. Suyama, Tetrahedron, 25, 1361 (1969).CrossRefGoogle Scholar
  61. 61.
    S. Yamada and H. Yamaguchi, Jpn. Patent 09157257; Chem. Abstr., 127, 34148 (1997).Google Scholar
  62. 62.
    A. Gopalsamy and P. V. Pallai, Tetrahedron Lett., 38, 907 (1997).CrossRefGoogle Scholar
  63. 63.
    M.-E. Theoclitou and L. A. Robinson, Tetrahedron Lett., 43, 3907 (2002).CrossRefGoogle Scholar
  64. 64.
    J. P. Edwards, T. K. Jones, J. D. Riggenberg, and E. M. Carreira, US Patent 6172241; Chem. Abstr., 134, 86171 (2001).Google Scholar
  65. 65.
    B. C. Ranu, U. Jana, and A. Hajra, Tetrahedron Lett., 41, 531 (2000).CrossRefGoogle Scholar
  66. 66.
    W. R. Vaughan, Org. Synth., 3, 329 (1955).Google Scholar
  67. 67.
    M. A. Kerry, G. W. Boyd, S. P. Mackay, O. Meth-Cohn, and L. Platt, J. Chem. Soc, Perkin Trans. 1, 2315 (1999).Google Scholar
  68. 68.
    L. N. Lipunova, E. V. Nosov, G. A. Mokrushina, L. P. Sidorova, and V. N. Charushin, Khim.-Farm. Zh., 34, No. 1, 20 (2000).Google Scholar
  69. 69.
    K.-i. Saeki, M. Tomomitsu, Y. Kawazoe, K. Momota, and H. Kimoto, Chem. Pharm. Bull., 44, 2254 (1996).Google Scholar
  70. 70.
    P. Sanna, A. Carta, and G. Paglietti, Heterocycles, 50, 693 (1999).CrossRefGoogle Scholar
  71. 71.
    K. Tanaka, Y. Kitahara, H. Suzuki, H. Osuga, and Y. Kawai, Tetrahedron Lett., 37, 5925 (1996).CrossRefGoogle Scholar
  72. 72.
    N. B. Chapman, K. Clarke, and K. S. Sharraa, J. Chem. Soc. (C), 17, 2334 (1970).Google Scholar
  73. 73.
    B. Ermanno and M. D. Di, J. Heterocycl. Chem., 8, 693 (1971).Google Scholar
  74. 74.
    W. M. Owton, J. Chem. Soc., Perkin Trans. 1, 2409 (1999).Google Scholar
  75. 75.
    Z. Zhang, L. M. V. Tillekeratne, and R. A. Hudson, Synthesis, 377 (1996).Google Scholar
  76. 76.
    Z. P. Zhang, L. M. V. Tillekeratne, and R. A. Hudson, Tetrahedron Lett., 39, 5133 (1998).CrossRefGoogle Scholar
  77. 77.
    Y. A. Jackson, M. A. Lyon, N. Townsend, K. Bellabe, and F. Soltanik, J. Chem. Soc., Perkin Trans. 1, 205 (2002).Google Scholar
  78. 78.
    J. Jones, Quinolines, Wiley-Interscience, London (1997), p. 11.Google Scholar
  79. 79.
    J.-C. Perch, G. Saint-Ruf, and N. P. Buu-Hoi, J. Chem. Soc. Perkin Trans. 1, 260 (1972).Google Scholar
  80. 80.
    P.-W. Phuan and M. C. Kozlowski, Tetrahedron Lett., 42, 3963 (2001).CrossRefGoogle Scholar
  81. 81.
    T. Isao, H. Yoshuki, and H. Minoru, Chem. Pharm. Bull., 41, 747 (1993).Google Scholar
  82. 82.
    Y. Hamada and I. Takeuchi, Yakugaku Zasshi., 120, 206 (2000); Chem. Abstr., 132, 222393 (2000).Google Scholar
  83. 83.
    H. Fujiwara, Heterocycles, 45, 119 (1997).Google Scholar
  84. 84.
    H. Fujiwara and K. Kitagawa, Heterocycles, 53, 409 (2000).Google Scholar
  85. 85.
    N. P. Buu-Hoi, P. Jacquignon, D. C. Thang, and T. Bartnik, J. Chem. Soc. Perkin Trans. 1, 263 (1972).Google Scholar
  86. 86.
    S. V. Nekrasov and A. V. El’tsov, Zh. Org. Khim., 7, 188 (1971).Google Scholar
  87. 87.
    M. Dufour, N. P. Buu-Hoi, and P. Jacquignon, J. Chem. Soc. (C), 1415 (1967).Google Scholar
  88. 88.
    I. V. Borovlev and O. P. Demidov, Chem. Heterocycl. Comp., 39, 1417 (2003).CrossRefGoogle Scholar
  89. 89.
    M. Dufour, N. P. Buu-Hoi, and P. Jacquignon, J. Chem. Soc. (C), 2070 (1968).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. A. Yamashkin
    • 1
  • E. A. Oreshkina
    • 1
  1. 1.N. P. Ogarev Mordovian State UniversitySaranskRussia

Personalised recommendations