Advertisement

Chemistry of Heterocyclic Compounds

, Volume 42, Issue 4, pp 451–457 | Cite as

Mass-spectral behavior and thermal stability of hetaryl analogs of unsymmetrical benzoins

  • S. P. Ivonin
  • A. V. Mazepa
  • A. V. Lapandin
Article

Abstract

The main path in the mass-spectral dissociation of the hetaryl analogs of unsymmetrical benzoins is β-fragmentation with cleavage of the central C-C bond. Here, the strongest peak in the mass spectra of α-benzoins is the peak of the hydroxymethylhetaryl cation, and in β-benzoins it is the peak of the hetaroyl cation. The thermal α → β isomerization of the hetaryl analogs of benzoin was studied. In the case of indole and pyrrole derivatives the formation of polyheterocyclic systems is observed.

Keywords

benzoins polyheterocycles isomerization mass spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Shi, J. E. T. Corrie, and P. J. Wan, J. Org. Chem., 62, 8278 (1997).CrossRefGoogle Scholar
  2. 2.
    W. Pei, S. Li, X. Nie, Y. Li, J. Pei, B. Chen, J. Wu, and X. Ye, Synthesis, 1298 (1998).Google Scholar
  3. 3.
    P. Simon, M. Landl, and M. Breza, Dyes & Pigments, 43, 227 (1999).CrossRefGoogle Scholar
  4. 4.
    V. K. Pandey and A. Shukla, Indian J. Chem., 38B, 1381 (1999).Google Scholar
  5. 5.
    Y. Aoyagi, N. Agata, N. Shibata, M. Horiguchi, and R. M. Williams, Tetrahedron Lett., 41, 10159 (2000).CrossRefGoogle Scholar
  6. 6.
    M. S. Singh and G. Pandey, Synth. Commun., 30, 3589 (2000).Google Scholar
  7. 7.
    J. A. Mohan, Indian J. Chem., 40B, 368 (2001).Google Scholar
  8. 8.
    C. M. Gordon and C. Ritchie, Green Chem., 4, 124 (2002).CrossRefGoogle Scholar
  9. 9.
    M. J. White and F. J. Leeper, J. Org. Chem., 66, 5124 (2001).CrossRefGoogle Scholar
  10. 10.
    Y. Aoyagi, A. Iijima, and R. M. Williams, J. Org. Chem., 66, 8010 (2001).CrossRefGoogle Scholar
  11. 11.
    M. Pohl, B. Lingen, and M. Müller, Chem. Eur. J., 8, 5288 (2002).CrossRefGoogle Scholar
  12. 12.
    S. Yoshima and K. Yamamoto, Yakugaku Zasshi, 92, 359 (1972); Chem. Abstr., 77, 5264 (1972).Google Scholar
  13. 13.
    M. R. Pokhrel, K. Janik, and S. H. Bossmann, Macromolecules, 33, 3577 (2000); and the references therein.CrossRefGoogle Scholar
  14. 14.
    A. Clerici and O. Porta, J. Org. Chem., 58, 2889 (1993).CrossRefGoogle Scholar
  15. 15.
    S. P. Ivonin, A. V. Lapandin, A. A. Anishchenko, and V. G. Shtamburg, Synth. Commun., 34, 451 (2004).CrossRefGoogle Scholar
  16. 16.
    S. P. Ivonin, A. V. Lapandin, and V. G. Shtamburg, Khim. Geterotsikl. Soedin., 187 (2004).Google Scholar
  17. 17.
    P. L. Julian and W. Passler, J. Am. Chem. Soc., 54, 4756 (1932).CrossRefGoogle Scholar
  18. 18.
    Z. Pawelka, E. S. Kryachko, and T. Zeegers-Huyskens, Chem. Phys., 287, 143 (2003).CrossRefGoogle Scholar
  19. 19.
    N. Wahlström, B. Stensland, and J. Bergman, Synthesis, 1187 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. P. Ivonin
    • 1
  • A. V. Mazepa
    • 2
  • A. V. Lapandin
    • 1
  1. 1.Dnepropetrovsk National UniversityDnepropetrovskUkraine
  2. 2.A. V. Bogatsky Physico-Chemical InstituteNational Academy of Sciences of UkraineOdessa

Personalised recommendations