Advertisement

Chemistry of Heterocyclic Compounds

, Volume 42, Issue 1, pp 53–59 | Cite as

Synthesis of complex compounds of methyl derivatives of 8-quinolineselenol with metals and their cytotoxic activity

  • E. Lukevics
  • I. Shestakova
  • I. Domracheva
  • A. Nesterova
  • J. Ashaks
  • D. Zaruma
Article

Abstract

A series of 2-methyl-, 4-methyl-, and 2,4-dimethyl-8-quinolineselenolates of zinc, cadmium, mercury, nickel, palladium, platinum, arsenic, antimony, and bismuth has been synthesized and their cytotoxicity has been studied on HT-1080 (human fibrosarcoma), MG-22A (mouse hepatoma), B16 (mouse melanoma), and Neuro 2A (mouse neuroblastoma) tumor cells. Mercury complexes were distinguished by high cytotoxicity on all the cell lines. Palladium complexes possessed somewhat lower activity and were significantly less toxic in relation to normal NIH 3T3 mouse embryo fibroblasts. All the studied metal 2-methyl-8-quinolineselenolates displayed high cytotoxicity on B16 melanoma, arsenic 4-methyl-8-quinolineselenolate acted most effectively on HT-1080 and MG-22A cells. Di(4-methyl-8-quinolyl) diselenide also possessed high cytotoxicity on these same cells.

Keywords

metal methyl-8-quinolineselenolates cytotoxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Soriano-Garcia, Curr. Med. Chem., 11, 1657 (2004).Google Scholar
  2. 2.
    C. W. Nogueira, G. Zeni, and J. B. T. Rocha, Chem. Rev., 104, 6255 (2004).CrossRefGoogle Scholar
  3. 3.
    A. J. Duffield-Lillico, I. Shureiqi, and S. M. Lippman, J. Nat. Cancer Inst., 96, 1645 (2004).Google Scholar
  4. 4.
    A. J. Duffield-Lillico, E. H. Slate, M. E. Reid, B. W. Turnbull, P. A. Wilkins, G. F. Coombs, Jr., H. K. Park, E. G. Gross, G. F. Graham, M. S. Stratton, J. R. Marshall, and L. C. Clark, J. Nat. Cancer Inst., 95, 1477 (2003).Google Scholar
  5. 5.
    J.-B. Lopez-Saez, A. Senra-Varela, and L. Pousa-Estevez, Oncology, 64, 227 (2003).CrossRefGoogle Scholar
  6. 6.
    M. Koketsu and H. Ishihara, Curr. Org. Chem., 7, 175 (2003).CrossRefGoogle Scholar
  7. 7.
    N. Zhou, H. Xiao, T.-K. Li, A. Nur-E-Kamal, and L. F. Liu, J. Biol. Chem., 278, 29532 (2003).Google Scholar
  8. 8.
    Y. Dong, H. Zhang, L. Hawthorn, H. E. Ganther, and C. Ip, Cancer. Res., 63, 52 (2003).Google Scholar
  9. 9.
    M. S. Stratton, M. E. Reid, G. Schwartzberg, F. E. Minter, B. K. Monroe, D. S. Alberts, J. R. Marshall, and F. R. Ahmann, Anti-Cancer Drugs, 14, 589 (2003).Google Scholar
  10. 10.
    M. S. Stratton, M. E. Reid, G. Schwartzberg, F. E. Minter, B. K. Monroe, D. S. Alberts, J. R. Marshall, and F. R. Ahmann, Anti-Cancer Drugs, 14, 595 (2003).Google Scholar
  11. 11.
    A. Wojtczak, Acta Pol. Pharmaceutica, 60, 215 (2003).Google Scholar
  12. 12.
    S. W. May, Expert Opinion on Investigational Drugs, 11, 1261 (2002).CrossRefGoogle Scholar
  13. 13.
    A. J. Duffield-Lillico, M. E. Reid, B. W. Turnbull, G. F. Combs, Jr., E. H. Slate, L. A. Fishbach, J. R. Marshall, and L. C. Clark, Cancer Epidemiol., Biomarkers & Prevention, 11, 630 (2002).Google Scholar
  14. 14.
    M. E. Reid, A. J. Duffield-Lillico, L. Garland, B. W. Turnbull, L. C. Clark, and J. R. Marshall, Cancer Epidemiol., Biomarkers & Prevention, 11, 1285 (2002).Google Scholar
  15. 15.
    M. A. Nelson, M. Reid, A. J. Duffield-Lillico, and J. R. Marshall, Urol. Clin. North Amer., 29,No. 1, 1 (2002).Google Scholar
  16. 16.
    C. Ip, Y. Dong, and H. E. Ganther, Cancer Metastasis Rev., 21, 281 (2002).CrossRefGoogle Scholar
  17. 17.
    M. P. Rayman, Lancet, 356, 233 (2000).CrossRefGoogle Scholar
  18. 18.
    E. Lukevics, P. Arsenyan, K. Rubina, I. Shestakova, I. Domracheva, A. Nesterova, J. Popelis, and O. Pudova, Appl. Organomet. Chem., 16, 235 (2000).Google Scholar
  19. 19.
    E. Lukevics, P. Arsenyan, I. Shestakova, I. Domracheva, I. Kanepe, S. Belyakov, J. Popelis, and O. Pudova, Appl. Organomet. Chem., 16, 228 (2000).Google Scholar
  20. 20.
    K. El-Bayoumy, Cancer Res., 45, 3631 (1985).Google Scholar
  21. 21.
    T. Tanaka, B. S. Reddy, and K. El-Bayoumy, Jpn. J. Cancer Res., 76, 462 (1985).Google Scholar
  22. 22.
    B. S. Reddy, T. Tanaka, and B. Simi, J. Nat. Cancer Inst., 75, 791 (1985).Google Scholar
  23. 23.
    B. S. Reddy, P. Upadhyaya, B. Simi, and C. V. Rao, Anticancer Res., 14, 2509 (1994).Google Scholar
  24. 24.
    B. S. Reddy, T. T. Wynn, K. El-Bayoumy, P. Upadhyaya, E. Fiala, and C. Rao, Anticancer Res., 16, 1123 (1996).Google Scholar
  25. 25.
    Ya. Ashaks, Yu. Bankovskii, D. Zaruma, I. Shestakova, I. Domracheva, A. Nesterova, and E. Lukevits, Khim. Geterotsikl. Soedin., 905 (2004).Google Scholar
  26. 26.
    Yu. Bankovsky, J. Ashaks, and D. Zaruma, Latv. J. Chem., 371 (2002).Google Scholar
  27. 27.
    Ya. V. Ashaks, J. Bankovskis, and D. E. Zaruma, Latv. J. Chem., 201 (2003).Google Scholar
  28. 28.
    J. Ashaks, J. Bankovskis, and D. Zaruma, Latv. J. Chem., 311 (2001).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • E. Lukevics
    • 1
  • I. Shestakova
    • 1
  • I. Domracheva
    • 1
  • A. Nesterova
    • 1
  • J. Ashaks
    • 2
  • D. Zaruma
    • 2
  1. 1.Latvian Institute of Organic SynthesisRigaLatvia
  2. 2.Institute of Inorganic ChemistryRiga Technical UniversitySalaspilsLatvia

Personalised recommendations