Advertisement

Chemistry of Heterocyclic Compounds

, Volume 42, Issue 1, pp 45–52 | Cite as

New approach to the synthesis of substituted 5-arylcarbamoyl-3-cyano-6-methylpyridine-2(1h)-thiones. Molecular and crystal structure of 2-allylthio-3-cyano-5-(2-methoxyphenylcarbamoyl)-6-methyl-4-(5-methyl-2-furyl)-1,4-dihydropyridine

  • V. D. Dyachenko
  • A. N. Chernega
Article

Abstract

Morpholinium 5-arylcarbamoyl-3-cyano-6-methyl-4-(5-methyl-2-furyl)-1,4-dihydropyridine-2-thiolates have been obtained by the interaction of enamines of acetoacetanilides with 5-methyl-2-furfurylidenecyanothioacetamide. Alkylation of the salts gives thioethers and oxidation gives the corresponding substituted pyridine-2(1H)-thiones. The structure of 2-allylthio-3-cyano-5-(2-methoxyphenylcarbamoyl)-6-methyl-4-(5-methyl-2-furyl)-1,4-dihydropyridine was studied by X-ray crystallographic analysis.

Keywords

morpholinium 5-arylcarbamoyl-3-cyano-6-methyl-4-(5-methyl-2-furyl)-1,4-dihydropyridine-2-thiolates enamines of acetoacetanilides (5-methyl-2-furfurylidene)cyanothioacetamide pyridine-2(1H)-thiones thioethers alkylation X-ray structural analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. D. Dyachenko, S. G. Krivokolysko, and V. P. Litvinov, Khim. Geterotsikl. Soedin., 560 (1997).Google Scholar
  2. 2.
    V. D. Dyachenko, S. G. Krivokolysko, and V. P. Litvinov, Zh. Org. Khim., 34, 927 (1998).Google Scholar
  3. 3.
    B. D. Dyachenko, S. G. Krivokolysko, V. N. Nesterov, and V. P. Litvinov, Khim. Geterotsikl. Soedin., 1243 (1996).Google Scholar
  4. 4.
    D. Tirzite, A. Krauze, A. Zubareva, G. Tirzite, and G. Duburs, Khim. Geterotsikl. Soedin., 902 (2002).Google Scholar
  5. 5.
    A. A. Krauze, R. O. Vitolinya, M. R. Romanova, Khim.-farm. Zh., 22, 548 (1988).Google Scholar
  6. 6.
    A. A. Krauze, A. G. Odynets, A. A. Verreva, S. K. Germane, A. N. Kozhukhov, and G. Ya. Duburs, Khim.-farm. Zh., 25, 40 (1991).Google Scholar
  7. 7.
    D. H. R. Barton and W. D. Ollis (editors), Comprehensive Organic Chemistry, Vol. 3, Pergamon, Oxford (1979); [Russian translation],Khimiya, Moscow (1982), p. 482.Google Scholar
  8. 8.
    V. P. Litvinov, L. A. Rodinovskaya, Yu. A. Sharanin, A. M. Shestopalov, and A. Senning, Sulfur Reports, 13, 1 (1992).Google Scholar
  9. 9.
    N. S. Zefirov and V. A. Palyulin, Dokl. Akad. Nauk SSSR, 252, 111 (1980).Google Scholar
  10. 10.
    M. Burke-Laing and M. Laing, Acta Crystallogr., B32, 3216 (1976).Google Scholar
  11. 11.
    S. Samdal, H. M. Seip, and T. Torgrimsen, J. Mol. Struct., 57, 105 (1979).CrossRefGoogle Scholar
  12. 12.
    L. N. Kuleshova and R. M. Zorkii, Acta Crystallogr., B37, 1363 (1981).Google Scholar
  13. 13.
    D. J. Watkin, C. K. Prout, J. R. Carruthers, and P. W. Betteridge, CRYSTALS Issue 10, Chemical Crystallography Laboratory, Univ. of Oxford (1996).Google Scholar
  14. 14.
    A. C. T. North, D. C. Phillips, F. Scott, and F. S. Mathews, Acta Crystallogr., A24, 351 (1968).Google Scholar
  15. 15.
    J. R. Carruthers and D. J. Watkin, Acta Crystallogr., A35, 698 (1979).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. D. Dyachenko
    • 1
  • A. N. Chernega
    • 2
  1. 1.Lugansk T. Shevchenko State Pedagogical UniversityLuganskUkraine
  2. 2.Institute of Organic ChemistryNational Academy of Sciences of UkraineKiev

Personalised recommendations