Chemistry of Heterocyclic Compounds

, Volume 42, Issue 1, pp 28–33 | Cite as

Transformations of sym-octahydroxanthene-1,8-diones and 1,8-dioxo-sym-octahydroxanthylium salts in recyclization under the influence of amines

  • Yu. M. Shchekotikhin
  • T. G. Nikolaeva


The chemical behavior of 9-R-sym-octahydroxanthene-1,8-diones and salts based on them in recyclization reactions under the influence of amines was studied. The effect of the basicity of the amines on the direction of recyclization was established. A method is proposed for the single-stage synthesis of sym-octahydroacridine-1.8-dione oximes based on 1,8-dioxo-sym-octahydroxanthenes. Conditions were worked out for the oxidation of sym-octahydroxanthene-1,8-diones and N-R-decahydroacridinediones to the corresponding salts.


decahydroacridine-1,8-diones sym-octahydroacridine-1,8-dione oximes 1,8-dioxo-sym-octahydroacridinium perchlorates sym-octahydroxanthene-1,8-diones 1,8-dioxo-sym-octahydroxanthylium salts amination oxidation recyclization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ya. Strakov, E. Yu. Gudrinietse, and D. R. Zitsane, Khim. Geterotsikl. Soedin., 1011 (1974).Google Scholar
  2. 2.
    K. Nagarajan and S. J. Shenoy, Indian J. Chem., 31A, No. 2, 73 (1992).Google Scholar
  3. 3.
    H. H. Lehz and M. Mitrovic, US Patent 3414587; Chem. Abstr., 70, 57648 (1969).Google Scholar
  4. 4.
    W. Kirkor and S. Rychter, Soc. Scient. Lodz. Acta Chim., No. 11, 91 (1966).Google Scholar
  5. 5.
    H. Antaki, J. Chem. Soc., 4877 (1963).Google Scholar
  6. 6.
    H. Antaki, J. Chem. Soc., 2263 (1965).Google Scholar
  7. 7.
    M. Seth and A. P. Bhaduri, Indian J. Chem., 15B, No. 2, 196 (1977).Google Scholar
  8. 8.
    A. A. Bakibaev, Zh. Org. Khim., 27, 1519 (1991).Google Scholar
  9. 9.
    Yu. M. Shchekotikhin, Yu. A. Getmanenko, T. G. Nikolaeva, and A. P. Kriven’ko, Khim. Geterotsikl. Soedin., 1344 (2001).Google Scholar
  10. 10.
    M. V. Mel’nik, M. Yu. Kornilov, A. V. Turov, and B. M. Gutsulyak, Zh. Org. Khim., 18, 1460 (1982).Google Scholar
  11. 11.
    T. G. Nikolaeva, Yu. M. Shchekotikhin, A. S. Ponomarev, and A. P. Kriven’ko, Khim. Geterotsikl. Soedin., 475 (2000).Google Scholar
  12. 12.
    O. H. Mattson and G. Sundström, Acta Chem. Scand., 24, 2267 (1970).Google Scholar
  13. 13.
    I. O. Edafiogho, C. N. Hinko, N. Chang, J. A. Moore, D. Mulzac, J. M. Nicholson, and K. R. Scott, J. Med Chem., 32, 2798 (1992).Google Scholar
  14. 14.
    N. Srividya, P. Ramamurthy, P. Shanmugasundaram, and V. T. Ramakrishnan, J. Org. Chem., 61, 5083 (1996).CrossRefGoogle Scholar
  15. 15.
    N. Martin, M. Quinteiro, C. Seoane, J. L. Soto, A. Mora, M. Suarez, E. Ochoa, A. Morales, and R. S. del Bosq, J. Heterocycl. Chem., 32, 235 (1994).Google Scholar
  16. 16.
    G. Ya. Vanag and E. I. Stankevich, Zh. Obshch. Khim., 30, 3287 (1960).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Yu. M. Shchekotikhin
    • 1
  • T. G. Nikolaeva
    • 2
  1. 1.ZAO Nita-FarmSaratovRussia
  2. 2.N. G. Chernyshevsky Saratov State UniversitySaratovRussia

Personalised recommendations