Advertisement

Chemistry of Heterocyclic Compounds

, Volume 41, Issue 9, pp 1091–1101 | Cite as

Synthesis of Azoles with Two Pyridine Substituents at Carbon Atoms and Their Use in Coordination Chemistry. (Review)

  • S. Z. Vatsadze
  • V. N. Nuriev
  • N. V. Zyk
Article

Abstract

Published data on the synthesis of azoles containing two pyridine substituents are analyzed in relation to the type of central five-membered ring. The applications of such molecules as ligands in coordination chemistry are discussed.

Keywords

isoxazoles imidazoles oxadiazoles pyrazoles pyridines thiadiazoles thiazoles triazoles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. Kitagawa, R. Kitaura, and S. Noro, Angew. Chem., Int. Ed., 43, 2334 (2004).CrossRefGoogle Scholar
  2. 2.
    C. Janiak, Dalton Trans., 2071 (2003).Google Scholar
  3. 3.
    A. J. Blake, N. R. Champness, M. Crew, and S. Parsons, New J. Chem., 23, 13 (1999).CrossRefGoogle Scholar
  4. 4.
    A. J. Blake, N. R. Champness, P. Hubberstey, W.-S. Li, M. A. Wittersby, and M. Schroeder, Coord. Chem. Rev., 183, 117 (1999).CrossRefGoogle Scholar
  5. 5.
    R. Levine and J. K. Sneed, J. Am. Chem. Soc., 73, 5614 (1951).Google Scholar
  6. 6.
    L. Fabbrini, Farmaco. Ed. Sci., 9, 603 (1954).Google Scholar
  7. 7.
    M. Ferles, S. Kafka, and A. Silkhankova, Coll. Czech. Chem. Commun., 46, 1167 (1981).Google Scholar
  8. 8.
    M. Ferles, R. Liboska, and P. Trska, Coll. Czech. Chem. Commun., 55, 1228 (1990).CrossRefGoogle Scholar
  9. 9.
    G. Black, E. Depp, and B. B. Corson, J. Org. Chem., 14, 14 (1949).CrossRefGoogle Scholar
  10. 10.
    V. J. Catalano and T. J. Craig, Inorg. Chem., 42, 321 (2003).Google Scholar
  11. 11.
    D. Anderson and A. Hassner, J. Chem. Soc., Chem. Commun., 45 (1974).Google Scholar
  12. 12.
    K. Nakano, N. Suemura, K. Yoneda, S. Kawata, and S. Kaizaki, Dalton Trans., 740 (2005).Google Scholar
  13. 13.
    C. Sens, M. Rodriguez, I. Romero, A. Llobet, T. Parella, B. P. Sullivan, and J. Benet-Buchholz, Inorg. Chem., 42, 2040 (2003).Google Scholar
  14. 14.
    V. J. Catalano and T. J. Craig, Inorg. Chem., 42, 321 (2003).Google Scholar
  15. 15.
    V. J. Catalano and T. J. Craig, Polyhedron, 19, 475 (2000).Google Scholar
  16. 16.
    G. Dong, A. T. Baker, and D. C. Craig, Inorg. Chim. Acta, 231, 241 (1995).CrossRefGoogle Scholar
  17. 17.
    G. Dong, J. P. Mattews, D. C. Craig, and A. T. Baker, Inorg. Chim. Acta, 284, 266 (1999).CrossRefGoogle Scholar
  18. 18.
    J. Wang, R. Mason, D. VanDerveer, K. Feng, and X. R. Bu, J. Org. Chem., 68, 5415 (2003).Google Scholar
  19. 19.
    B. Hart, R. Sibley, J. Dumas, D. Bierer, and C. Zhang, PCX Int. Appl. WO 2003 027 096 Al, 2003 0403; Chem. Abstr., 138, 287675 (2003).Google Scholar
  20. 20.
    M. L. Larter and M. Philips, Tetrahedron Lett., 39, 4785 (1998).CrossRefGoogle Scholar
  21. 21.
    H. Vorbrueggen, Nepera Chemical Co., Inc., DE 3029376; Chem. Abstr., 96, 199695 (1982).Google Scholar
  22. 22.
    G. Saint-Ruf and N. P. Buu-Hoi, Bull. Soc. Chim. France., 2, 525 (1970).Google Scholar
  23. 23.
    M. V. Proskurnina, N. A. Lozinskaya, S. E. Tkachenko, and N. S. Zefirov, Zh. Org. Khim., 38, 1149 (2002).Google Scholar
  24. 24.
    N. A. Lozinskaya, V. V. Tsibezova, M. V. Proskurnina, and N. S. Zefirov, Izv. Akad. Nauk. Ser. Khim., 646 (2003).Google Scholar
  25. 25.
    R. Menasse, G. Klen, and H. Erlenmeyer, Helv. Chim. Acta, 38, 1289 (1955).Google Scholar
  26. 26.
    H. A. Goodwin, Aust. J. Chem., 17, 1366 (1964).CrossRefGoogle Scholar
  27. 27.
    H. A. Goodwin and R. N. Sylva, Aust. J. Chem., 21, 2881 (1968).Google Scholar
  28. 28.
    E. Koenig, G. Ritter, and H. A. Goodwin, Chem. Phys., 1, 17 (1973).Google Scholar
  29. 29.
    M. Larva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, J. Lumin., 75, 149 (1997).Google Scholar
  30. 30.
    C. R. Rice, C. J. Baylies, H. J. Clayton, J. C. Jeffery, R. L. Paul, and M. D. Ward, Inorg. Chim. Acta, 351, 207 (2003).CrossRefGoogle Scholar
  31. 31.
    C. R. Rice, C. J. Baylies, L. P. Harding, J. C. Jeffery, R. L. Paul, and M. D. Ward, Polyhedron, 22, 755 (2003).CrossRefGoogle Scholar
  32. 32.
    V. G. Yashunskii, L. N. Pavlov, V. G. Ermolaeva, and M. N. Shchukina, Khim. Nauka i Prom., 2, 658 (1957).Google Scholar
  33. 33.
    V. G. Yashunskii, L. N. Pavlov, V. G. Ermolaeva, and M. N. Shchukina, Med. Prom. SSSR, 11, 38 (1957).Google Scholar
  34. 34.
    M. Antoine and S. Dupin, Bull. Soc. Chim. France, 1364 (1962).Google Scholar
  35. 35.
    D. Libman and R. Slack, J. Chem. Soc., 2253 (1956).Google Scholar
  36. 36.
    J. Geldard and F. Lions, J. Org. Chem., 30, 318 (1965).Google Scholar
  37. 37.
    S. Fanni, T. E. Keyes, C. M. O'Connor, H. Hughes, R. Wang, and J. G. Vos, Coord. Chem. Rev., 208, 77 (2000).CrossRefGoogle Scholar
  38. 38.
    U. Beckmann and S. Brooker, Coord. Chem. Rev., 245, 17 (2003)CrossRefGoogle Scholar
  39. 39.
    M. H. Klingele and S. Brooker, Coord. Chem. Rev., 241, 119 (2003).CrossRefGoogle Scholar
  40. 40.
    F. Dallacker, Monatsh. Chem., 91, 294 (1960).Google Scholar
  41. 41.
    H. Burke, J. Gallagher, M. Indelli, and J. Vos, Eur. J. Inorg. Chem., 846 (2002).Google Scholar
  42. 42.
    M. Santus, Acta Pol. Pharm., 33, 577 (1976).Google Scholar
  43. 43.
    S. Mandal, H. Clase, J. Bridson, and S. Ray, Inorg. Chim. Acta, 209, 1 (1993).CrossRefGoogle Scholar
  44. 44.
    W. Chen and Z. Wang, Acta Crystallogr., C54, 851 (1998).Google Scholar
  45. 45.
    A. P. Grekov and E. P. Nesynov, Zh. Obshch. Khim., 30, 3240 (1960).Google Scholar
  46. 46.
    V. Pachamia and A. Parikh, J. lnd. Chem. Soc., 65, 357 (1988).Google Scholar
  47. 47.
    V. Pachamia and A. Parikh, J. Ind. Chem. Soc., 66, 250 (1989).Google Scholar
  48. 48.
    F. Bentiss and M. Lagrenee, J. Heterocycl. Chem., 36, 1029 (1999).CrossRefGoogle Scholar
  49. 49.
    B. Bentiss, M. Lagrenee, and D. Barbry, Synth. Comm., 31, 935 (2001).CrossRefGoogle Scholar
  50. 50.
    C. Richardson, P. J. Steel, D. M. D'Alessandro, P. C. Junk, and F. R. Keene, J. Chem. Soc., Dalton Trans., 2775 (2002).Google Scholar
  51. 51.
    X.-M. Zhang, R.-Q. Fang, and H.-S. Wu, Cryst. Eng. Comm., 1, 96 (2005).Google Scholar
  52. 52.
    Z. Huang, H.-B. Song, M. Du, S.-T. Chen, and X.-H. Bu, Inorg. Chem., 43, 931 (2004).CrossRefGoogle Scholar
  53. 53.
    Y.-B. Dong, J.-P. Ma, R.-Q. Huang, M. D. Smith, and H.-C. zur Loye, Inorg. Chem., 42, 5699 (2003).Google Scholar
  54. 54.
    Y.-Y. Fang, H. Liu, M. Du, Y.-M. Guo, and X.-H. Bu, J. Mol. Struct., 608, 229 (2002).CrossRefGoogle Scholar
  55. 55.
    Y.-B. Dong, J.-Y. Cheng, H.-Y. Wang, R.-Q. Huang, B. Tang, M. D. Smith, and H.-C. zur Loye, Chem. Mat., 15, 2593 (2003).Google Scholar
  56. 56.
    A. E. Siegrist, E. Maeder, M. Duennenberger, and P. Liechti, CIBA Ltd., SWXXAS CH 411906; Chem. Abstr., 71, 64406 (1967).Google Scholar
  57. 57.
    F. Bentiss, M. Lagrenee, J. P. Wignacourt, and E. M. Holt, Polyhedron, 21, 403 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • S. Z. Vatsadze
    • 1
  • V. N. Nuriev
    • 1
  • N. V. Zyk
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations