Skip to main content
Log in

Heterocyclic Analogs of 5,12-Naphthacenequinone. 1. Synthesis of Heterocyclic Analogs Starting from 2,3-Diaminoquinizarine

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Abstract

The amination of 2-nitroquinizarine using hydroxylamine gives 2-amino-3-nitroquinizarine, which, upon reduction, gives previously unreported 2,3-diaminoquinizarine, a key intermediate in the synthesis of heterocyclic analogs of 5,12-naphthacenequinone, namely, 4,11-dihydroxyanthra[2,3-d]imidazole-5,10-dione (imidazoloquinizarine), 4,11-dihydroxyanthra[2,3-d][1,2,3]triazole-5,10-dione (triazoloquinizarine), and 5,12-dihydroxynaphtho[2,3-g]quinoxaline-6,11-dione (pyrazinoquinizarine).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. C. Pandey, M. W. Toussaint, J. C. McGuire, and M. C. Thomas, J. Antibiot., 42, 1567 (1989).

    PubMed  Google Scholar 

  2. Y. Yamashita, Y. Sattoh, K. Ando, K. Takahashi, H. Ouno, and H. Nakano, J. Antibiot. 43, 1344 (1990).

    PubMed  Google Scholar 

  3. G. F. Gauze and Yu. V. Dudnik, Antitumor Antibiotics [in Russian], Meditsina, Moscow (1987), p. 44.

    Google Scholar 

  4. M. D. Mashkovskii, Drugs [in Russian], Vol. 2, Izd. Novaya Volna, Moscow (2000), p. 298.

    Google Scholar 

  5. D. Powell, J. Skotnicki, and J. Upeslacis, Ann. Rep. Med. Chem., 32, 165 (1997).

    Google Scholar 

  6. G. W. Rewcastle, B. D. Palmer, A. J. Bridger, H. D. H. Showalter, L. Sun, J. Nelson, A. McMichel, A. J. Kraker, D. W. Fry, and W. A. Denny, J. Med. Chem., 39, 918 (1996).

    Article  PubMed  Google Scholar 

  7. K. Maeda, T. Osato, and H. Umezava, J. Antibiot., 6, 182 (1953).

    PubMed  Google Scholar 

  8. S. H. Krawczyk and N. Bischofberger, Ann. Rep. Med. Chem., 32, 143 (1997).

    Google Scholar 

  9. R. Zhou, K. R. Ayrey, J. C. Drach, and L. B. Townsend, J. Med. Chem., 39, 3477 (1996).

    Article  PubMed  Google Scholar 

  10. S. Saluja, R. Zhou, J. C. Drach, and L. B. Townsend, J. Med. Chem., 39, 881 (1996).

    Article  PubMed  Google Scholar 

  11. C. Fernandez, U. Martin-Escudero, and M. Izguierdo, Rev. Clinica Espanola, 135, 539 (1974).

    Google Scholar 

  12. C. Fernandez. U. Martin-Escudero, and M. Izguierdo, Rev. Clinica Espanola, 141, 51 (1976).

    Google Scholar 

  13. M. F. Brana, J. M. Castellano, G. Keilhauer, A. Machuca, Y. Martin, C. Redondo, E. Schlick, and N. Walker, Anti-Cancer Drug Design, 9, 527 (1994).

    PubMed  Google Scholar 

  14. B. C. Baguley, Anti-Cancer Drug Design, 6, 8 (1991).

    Google Scholar 

  15. W. A. Denny, Anti-Cancer Drug Design, 4, 249 (1989).

    Google Scholar 

  16. Z. Mezarska, E. Augustin, and J. Dzeigielewski, Anti-Cancer Drug Design, 11, 73 (1996).

    PubMed  Google Scholar 

  17. B. J. Foster, K. Clagett-Carr, and D. D. Shoemaker, Investigational New Drugs, 3, 403 (1985).

    Article  PubMed  Google Scholar 

  18. C. N. Nyujen, F. Fan, and J. F. Rion, Anti-Cancer Drug Design, 10, 277 (1995).

    PubMed  Google Scholar 

  19. L. W. Deady, A. J. Kaye, G. J. Finlay, B. C. Baguley, and W. A. Denny, J. Med. Chem., 40, 2040 (1997).

    PubMed  Google Scholar 

  20. M. V. Gorelik, Chemistry of Anthraquinones and Their Derivatives [in Russian], Khimiya, Moscow (1983), p. 154.

    Google Scholar 

  21. D. Jeziorek, D. Dyl, A. Liwo, W. Woznicki, A. Tempezyk, and E. Borowski, Anti-Cancer Drug Design, 8, 223 (1993).

    PubMed  Google Scholar 

  22. G. Gassinelli, F. Di Matteo, and S. Fomerza, J. Antibiot., 33, 1468 (1980).

    PubMed  Google Scholar 

  23. A. C. Sartolrelli, ACS Symposium Series, Cancer Chemotherapy (Washington, DC), 30, 41 (1976).

    Google Scholar 

  24. A. E. Shchekotikhin, E. P. Baberkina, V. N. Buyanov, K. F. Turchin, and N. N. Suvorov, Khim. Geterotsikl. Soedin., 1030 (2001).

  25. A. E. Shchekotikhin, D. A. Silaev, E. P. Baberkina, I. G. Makarov, V. N. Buyanov, and N. N. Suvorov, Khim. Geterotsikl. Soedin., 623 (2002).

  26. J. Meisenheimer and E. Patzig, Ber., 39, 2533 (1906).

    Google Scholar 

  27. M. C. Marschalk, Bull. Soc. Chim. France, 5, 629 (1937).

    Google Scholar 

  28. Bayer & Co., German Patent 272,299; Frdl., 11, 590 (1915).

    Google Scholar 

  29. J. B. Wright, Chem. Rev., 48, 401 (1951).

    Google Scholar 

  30. M. V. Gorelik, Chemistry of Anthraquinones and Their Derivatives [in Russian], Khimiya, Moscow (1983), p. 85.

    Google Scholar 

  31. V. Ya. Fain, Electronic Absorption Spectra and the Structure of Anthraquinones. Disubstituted 9,10-Anthraquinones [in Russian], Vol. 2, Sputnik+ (2003), p. 83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 1081–1088, July, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shchekotikhin, A.E., Makarov, I.G., Buyanov, V.N. et al. Heterocyclic Analogs of 5,12-Naphthacenequinone. 1. Synthesis of Heterocyclic Analogs Starting from 2,3-Diaminoquinizarine. Chem Heterocycl Compd 41, 914–920 (2005). https://doi.org/10.1007/s10593-005-0248-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-005-0248-7

Keywords

Navigation