Advertisement

Chemistry of Heterocyclic Compounds

, Volume 41, Issue 2, pp 137–162 | Cite as

Quinoline Oximes: Synthesis, Reactions, and Biological Activity. (Review)

  • E. Abele
  • R. Abele
  • K. Rubina
  • E. Lukevics
Article

Abstract

Data on the production and the reactions of quinoline aldoximes and ketoximes and their derivatives are reviewed. The synthesis of new heterocycles based on quinoline oximes is examined separately. The main results from investigation of the biological activity of quinoline oximes are presented.

Keywords

oximes quinoline biological activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    T. Nakashima, Yakugaku Zasshi, 77, 1298 (1957); Chem. Abstr., 52, 6345 (1958).Google Scholar
  2. 2.
    Y.-J. Liu, Y.-J. Ding, Y. Liu, and G. J. Jiang, Youji Huaxue, 17, 458 (1997); Chem. Abstr., 127, 346281 (1997).Google Scholar
  3. 3.
    V. M. Dziomko, Z. S. Sidenko, and G. S. Chizhova, Metody Poluch. Khim. Reaktivov Prep., No. 15, 114 (1967); Chem. Abstr., 69, 18989 (1968).Google Scholar
  4. 4.
    R. E. Brown and R. I. Meltzer, US Patent 3518269; Chem. Abstr., 73, 130905 (1970).Google Scholar
  5. 5.
    CIBA Ltd. Swiss Patent 298336; Chem. Abstr., 50, 6515 (1956).Google Scholar
  6. 6.
    A. Godard and G. Queguiner, J. Heterocycl. Chem., 17, 465 (1980).Google Scholar
  7. 7.
    V. M. Radionov and M. A. Berkengeim, Zh. Obshch. Khim., 16, 483 (1946).Google Scholar
  8. 8.
    G. Tsatsas, Ann. Pharm. Fr., 10, 61 (1952).PubMedGoogle Scholar
  9. 9.
    V. M. Dziomko, I. A. Krasavin, and T. N. Egorova, Metody Poluch. Khim. Reaktivov Prep., No. 15, 63 (1967); Chem. Abstr., 68, 114404 (1968).Google Scholar
  10. 10.
    C. A. Buehler and J. O. Harris, J. Am. Chem. Soc., 72, 5015 (1950).CrossRefGoogle Scholar
  11. 11.
    A. G. Mikhailovskii, V. S. Shklyaev, A. V. Ignatenko, and M. I. Vakhrin, Khim. Geterotsikl. Soedin., 934 (1995).Google Scholar
  12. 12.
    M. D. Mosher and N. R. Natale, J. Heterocycl. Chem., 32, 779 (1995).Google Scholar
  13. 13.
    D. T. Witiak and S. Ananthan, J. Org. Chem., 51, 3237 (1986).CrossRefGoogle Scholar
  14. 14.
    R. P. Srivastava, Neelima, and A. P. Bhaduri, Indian J. Chem., 26B, 418 (1987).Google Scholar
  15. 15.
    J. H. Musser, Heterocycles, 22, 1505 (1984).Google Scholar
  16. 16.
    Y. Tagawa, T. Yoshida, N. Honjo, and Y. Goto, Heterocycles, 29, 1781 (1989).Google Scholar
  17. 17.
    Y. Tagawa, H. Arakawa, and Y. Goto, Heterocycles, 29, 1741 (1989).Google Scholar
  18. 18.
    T. Kato, Y. Goto, and M. Kondo, Yakugaku Zasshi, 84, 290 (1964).PubMedGoogle Scholar
  19. 19.
    E. A. Mistryukov and O. N. Sorokina, Mendeleev Commun., 205 (1993).Google Scholar
  20. 20.
    E. A. Mistryukov, Y. Rozpravka, and O. N. Sorokina, Mendeleev Commun., 205 (1993).Google Scholar
  21. 21.
    S. E. Forman, J. Org. Chem., 29, 3323 (1964).Google Scholar
  22. 22.
    S. E. Forman, US Patent 3150135; Chem. Abstr., 62, 2766 (1965).Google Scholar
  23. 23.
    Y. Tagawa, N. Honjo, and Y. Goto, Chem. Pharm. Bull., 34, 564 (1986).Google Scholar
  24. 24.
    H. Reimlinger, J. J. M. Vandewalle, W. R. F. Lingier, and E. de Ruiter, Chem. Ber., 108, 3771 (1975).Google Scholar
  25. 25.
    H. Yamanaka, H. Abe, T. Sakamoto, H. Hiranuma, and A. Kamata, Chem. Pharm. Bull., 25, 1821 (1977).Google Scholar
  26. 26.
    V. A. Glushkov, V. I. Karmanov, E. V. Feshina, G. A. Postanogova, and Yu. V. Shklyaev, Khim. Geterotsikl. Soedin., 108 (2001).Google Scholar
  27. 27.
    K. Sakane, K. Terayama, E. Haruki, Y. Otsuji, and E. Imoto, Bull. Chem. Soc. Jpn., 47, 1297 (1974).Google Scholar
  28. 28.
    M. Iwao and T. Kuraishi, J. Heterocycl. Chem., 16, 689 (1979).Google Scholar
  29. 29.
    B. B. Aleksandrov, M. S. Gavrilov, V. D. Sviridov, I. D. Chkanikov, V. S. Shklyaev, and Yu. V. Shklyaev, Izv. Akad. Nauk. SSSR. Ser. Khim., 2136 (1990).Google Scholar
  30. 30.
    R. Chang and K. Kim, Bull. Korean Chem. Soc., 16, 475 (1995); Chem. Abstr., 123, 313713 (1995).Google Scholar
  31. 31.
    V. G. Ermolaeva and M. N. Shchukina, Khim.-Farm. Zh., No. 8, 33 (1071).Google Scholar
  32. 32.
    S. I. Kutkevichus, K. S. Sherenas, and R. I. Poshyunas, Khim. Geterotsikl. Soedin., 342 (1973).Google Scholar
  33. 33.
    A. Fadda, A. M. Khalil, and M. M. El-Habbal, Pharmazie, 46, 743 (1991).PubMedGoogle Scholar
  34. 34.
    A. Afonso, J. Einstein, and M. J. Gentles, US Patent 5190956; Chem. Abstr., 119, 28016 (1993).Google Scholar
  35. 35.
    S. X. Cai, Z.-L. Zhou, J.-C. Huang, E. R. Whittemore, Z. O. Egbuwoku, Y. Lu, J. E. Hawkinson, R. M. Woodward, E. Weber, and J. F. W. Keana, J. Med. Chem., 39, 3248 (1996).CrossRefPubMedGoogle Scholar
  36. 36.
    T. J. Schwan and H. A. Burch, J. Heterocycl. Chem., 20, 239 (1983).Google Scholar
  37. 37.
    T. J. Schwan, H. A. Burch, and J. E. Gray, US Patent 4349677; Chem. Abstr., 98, 89191 (1983).Google Scholar
  38. 38.
    J. M. Cox, J. A. Elvidge, and D. E. H. Jones, J. Chem. Soc., 1423 (1964).Google Scholar
  39. 39.
    P. Messinger and H. Meyer, Arch. Pharm., 309, 1009 (1976).Google Scholar
  40. 40.
    G. Cusmano, G. Macaluso, and M. Gruttadauria, Heterocycles, 36, 1577 (1993).Google Scholar
  41. 41.
    T. Kurihara, J. Sasaki, K. Santo, Y. Nakamura, R. Yoneda, and S. Harusawa, Heterocycles, 29, 2007 (1989).Google Scholar
  42. 42.
    F. Eloy and R. Lenaers, Chem. Rev., 62, 155 (1962).CrossRefGoogle Scholar
  43. 43.
    D. M. Bailey, US Patent 3927000; Chem. Abstr., 84, 135498 (1976).Google Scholar
  44. 44.
    A. Goldberg and W. Kelly, British Patent 595401; Chem. Abstr., 42, 4204 (1948).Google Scholar
  45. 45.
    F. D. Popp, L. E. Katz, C. W. Klinowski, and J. M. Wefer, J. Org. Chem., 33, 4447 (1968).CrossRefGoogle Scholar
  46. 46.
    E. O. Snoke and F. D. Popp, J. Heterocycl. Chem., 10, 99 (1973).Google Scholar
  47. 47.
    D. M. Bailey, German Patent 1923073; Chem. Abstr., 72, 66843 (1970).Google Scholar
  48. 48.
    C. Malen, B. Danree, and X. Pascaud, German Patent 2217180; Chem. Abstr., 78, 16052 (1973).Google Scholar
  49. 49.
    C. Mitsos, J. Petrou, O. Igglessi-Markopoulou, and J. Markopoulos, J. Heterocycl. Chem., 36, 881 (2000).Google Scholar
  50. 50.
    B. Clement and T. Kaempchen, Chem. Ber., 118, 3481 (1985).Google Scholar
  51. 51.
    N. Oi, Nippon Kagaku Zasshi, 80, 1151 (1959); Chem. Abstr., 55, 4247 (1961).Google Scholar
  52. 52.
    G. S. Sanyal and A. B. Modak, Natl. Acad. Sci. Lett. (India), 11, 183 (1988); Chem. Abstr., 110, 106969 (1989).Google Scholar
  53. 53.
    G. S. Nikolov and N. Tyutyulkov, Inorg. Nucl. Chem. Lett., 6, 697 (1970).CrossRefGoogle Scholar
  54. 54.
    J. Reihsig and H. W. Krause, J. Prakt. Chem., 31, 167 (1966).CrossRefGoogle Scholar
  55. 55.
    G. Giraudi, C. Baggiani, C. Giovannoli, C. Marletto, and A. Vanni, Anal. Chim. Acta, 378, 225 (1999).CrossRefGoogle Scholar
  56. 56.
    M. Calzadilla, A. Malpica, and P. M. Diaz, Int. J. Chem. Kinet., 28, 687 (1996); Chem. Abstr., 125, 220941 (1996).Google Scholar
  57. 57.
    B. J. Gregory, R. B. Moodie, and K. Schofield, J. Chem. Soc., B, 1687 (1970).Google Scholar
  58. 58.
    V. I. Sokol, V. V. Davydov, I. V. Kartashova, B. E. Zaitsev, Yu. V. Shklyaev, M. A. Ryabov, and V. S. Sergienko, Kristallografiya, 41, 477 (1996); Chem. Abstr., 125, 328481 (1996).Google Scholar
  59. 59.
    P. Grammaticakis, Compt. Rend., 248, 3719 (1959).Google Scholar
  60. 60.
    S. F. Mason, J. Chem. Soc., 22 (1960).Google Scholar
  61. 61.
    K. A. Jensen and P. H. Nielsen, Acta Chem. Scand., 18, 1 (1964).Google Scholar
  62. 62.
    R. L. Stevenson, M. E. Wacks, and W. M. Scott, Org. Mass Spectrom., 2, 261 (1969).CrossRefGoogle Scholar
  63. 63.
    M. S. Masoud, A. M. Hindawy, A. El-Dissouky, G. B. Mohamed, and T. Abd El-Fattah, Afinidad, 48, 319 (1991); Chem. Abstr., 116, 151009 (1992).Google Scholar
  64. 64.
    S. Rossi, A. Salvatori, and G. Peruzzi, Farmaco, Ed. Sci., 34, 486 (1979); Chem. Abstr., 91, 107873 (1979).Google Scholar
  65. 65.
    Y.-L. Chen, I.-L. Chen, C.-M. Lu, C.-C. Tzeng, L.-T. Tsao, and J.-P. Wang, Bioorg. Med. Chem., 11, 3921 (2003).CrossRefPubMedGoogle Scholar
  66. 66.
    M. V. Budnikova, A. L. Mikhal’chuk, and A. B. Rubinov, Khim. Geterotsikl. Soedin., 265 (2004).Google Scholar
  67. 67.
    N. Amlaiky, G. Leclerc, N. Decker, and J. Schwartz, Eur. J. Med. Chem.-Chim. Ther., 19, 341 (1984).Google Scholar
  68. 68.
    D. R. Shridhar, B. Ram, R. R. Krishna, and L. Narayana, Indian J. Chem., 25B, 76 (1986).Google Scholar
  69. 69.
    Neelima, B. Bhat, and A. P. Bhaduri, Indian J. Chem., 23B, 431 (1984).Google Scholar
  70. 70.
    A. L. Mikhal’chuk, O. V. Gulyakevich, D. B. Rubinov, I. L. Rubinova, and A. A. Akhrem, Khim. Geterotsikl. Soedin., 232 (1999).Google Scholar
  71. 71.
    G. N. Evenson and R. B. Moffett, J. Heterocycl. Chem., 17, 351 (1980).Google Scholar
  72. 72.
    P. Plath, K. Eicken, B. Zeeh, U. Eichenauer, H. Hagen, R. D. Kohler, N. Meyer, and B. Wuerzer, German Patent 3545904; Chem. Abstr., 107, 198109 (1987).Google Scholar
  73. 73.
    H. Miao, V. Cecchetti, O. Tabarrini, and A. Fravolini, J. Heterocycl. Chem., 37, 297 (2000).Google Scholar
  74. 74.
    W. Zhao, Huaxue Shiji, 19, 273 (1997); Chem. Abstr., 127, 330917 (1997).Google Scholar
  75. 75.
    J. J. Padbury and H. G. Lindwall, J. Am. Chem. Soc., 67, 1268 (1945).Google Scholar
  76. 76.
    H. Fiedler, Arch. Pharm., 293, 609 (1960).PubMedGoogle Scholar
  77. 77.
    H. Fiedler, Arch. Pharm., 297, 108 (1964).Google Scholar
  78. 78.
    S. K. Nandeeshaiah and S. Y. Amberkar, Indian J. Chem., 33B, 375 (1994).Google Scholar
  79. 79.
    R. Fujita, K. Watanabe, and H. Hongo, Ann. Rep. Tohoku Coll. Pharm., 44, 105 (1997); Chem. Abstr., 130, 13911 (1999).Google Scholar
  80. 80.
    H. M. Meshram, Synthesis, 943 (1992).Google Scholar
  81. 81.
    S. K. Dewan and R. Singh, Oriental J. Chem., 18, 379 (2002); Chem. Abstr., 138, 271356 (2003).Google Scholar
  82. 82.
    W. E. Hahn and Z. Cebulska, Pol. J. Chem., 60, 305 (1986).Google Scholar
  83. 83.
    L. Kaczmarek and R. Balicki, J. Prakt. Chem./Chem. Ztg., 336, 695 (1994).CrossRefGoogle Scholar
  84. 84.
    N. H. Cromwell and J. S. Burch, J. Am. Chem. Soc., 66, 872 (1944).CrossRefGoogle Scholar
  85. 85.
    M. Hamana, H. Noda, and J. Uchida, Yakugaku Zasshi, 90, 1001 (1970).PubMedGoogle Scholar
  86. 86.
    N. V. Smolentseva, I. A. Red’kin, and A. I. Tochilkin, Khim. Geterotsikl. Soedin., 514 (1975).Google Scholar
  87. 87.
    K. Ghosh, S. P. Mckee, and W. M. Sanders, Tetrahedron Lett., 32, 711 (1991).CrossRefGoogle Scholar
  88. 88.
    B. Cezanne, D. Bertram, D. Dorsch, W. Mederski, C. Tsaklakidis, C. Barnes, and J. Gleitz, PCX Int. Appl. WO Pat. 0384533; Chem. Abstr., 139, 323430 (2003).Google Scholar
  89. 89.
    R. Balicki and L. Kaczmarek, Gazz. Chim. Ital., 123, 525 (1993).Google Scholar
  90. 90.
    M. J. Mphahlele, O. Gheevarghese, and N. F. H. Makhubela, Phosphorus, Sulfur, Silicon Relat. Elem., 166, 303 (2000).Google Scholar
  91. 91.
    Neelima, B. Bhat, and A. P. Bhaduri, Indian J. Chem., 24B, 1286 (1985).Google Scholar
  92. 92.
    J. Kotler-Brajtburg, Acta Pol. Pharm., 25, 239 (1968).PubMedGoogle Scholar
  93. 93.
    I. Tikk, G. Deak, G. Toth, and J. Tamas, J. Chem. Soc., Perkin Trans. 1, 619 (1984).Google Scholar
  94. 94.
    K. Golankiewicz, Bull. Acad. Polon. Sci., Ser. Sci. Chim., 10, 417 (1962); Chem. Abstr., 59, 1640 (1963).Google Scholar
  95. 95.
    E. Abele and E. Lukevics, Heterocycles, 53, 2285 (2000).Google Scholar
  96. 96.
    M. C. McMillis, D. L. Wright, J. D. Zubkowski, and E. J. Valente, Tetrahedron Lett., 37, 7205 (1996).CrossRefGoogle Scholar
  97. 97.
    K. Eiter and E. Mrazek, Monatsh. Chem., 83, 926 (1952).CrossRefGoogle Scholar
  98. 98.
    S. V. Tolkunov, A. I. Khizhan, S. V. Shishkina, O. V. Shishkin, and V. I. Dulenko, Khim. Geterotsikl. Soedin., 64 (2004).Google Scholar
  99. 99.
    T. Kappe, R. Aigner, M. Joebstl, P. Hohengassner, and W. Stadlbauer, Heterocycl. Comm., 1, 341 (1995).Google Scholar
  100. 100.
    H. H. Zoorob and W. S. Hamama, 29, 325 (1986); Chem. Abstr., 111, 7250 (1989).Google Scholar
  101. 101.
    J. N. Kirn, K. S. Jung, J. S. Son, H. J. Lee, H. R. Kim, and E. K. Ryu, Korean J. Med. Chem., 6, 197 (1996); Chem. Abstr., 126, 131410 (1997).Google Scholar
  102. 102.
    B. Venugopalan, C. P. Bapat, E. P. de Souza, and N. J. de Souza, J. Heterocycl. Chem., 28, 337 (1991).Google Scholar
  103. 103.
    Z. Ma, L. Li, M. Rupp, S. Zhang, and X. Zhang, Org. Lett., 4, 987 (2002).CrossRefPubMedGoogle Scholar
  104. 104.
    R. C. Khunt, N. J. Datta, F. M. Bharmal, G. P. Mankad, and A. R. Parikh, Indian J. Heterocycl. Chem., 10, 97 (2000); Chem. Abstr., 134, 280754 (2001).Google Scholar
  105. 105.
    H. Gnichtel and B. Moller, Liebigs Ann. Chem., 1751 (1981).Google Scholar
  106. 106.
    V. S. Shklyaev, B. B. Aleksandrov, and M. S. Gavrilov, Izv. Akad. Nauk SSSR. Ser. Khim., 959 (1986).Google Scholar
  107. 107.
    Y. V. Shklyaev, V. A. Glushkov, V. V. Davidov, V. I. Sokol, and V. S. Sergienko, Mendeleev Commun., 36 (2000).Google Scholar
  108. 108.
    F. Kroehnke and W. Zecher, Chem. Ber., 95, 1128 (1962).Google Scholar
  109. 109.
    V. A. Artemov, A. M. Shestopalov, and V. P. Litvinov, Zh. Org. Khim., 31, 595 (1995).Google Scholar
  110. 110.
    V. A. Artyomov, A. M. Shestopalov, and V. P. Litvinov, Synthesis, 927 (1996).Google Scholar
  111. 111.
    H. Moehrle and B. Grimm, Arch. Pharm., 319, 325 (1986).Google Scholar
  112. 112.
    K. Harssnyi, M. Szentivanyi, J. Szeredi, G. Leszkovszky, and C. Vertesi, German Patent 2821226; Chem. Abstr., 90, 168592 (1979).Google Scholar
  113. 113.
    H. Moehrle and B. Grimm, Arch. Pharm., 319, 774 (1986).Google Scholar
  114. 114.
    N. Tohme, M. Demeunynck, M.F. Lhomme, and J. Lhomme, IARC Sci. Publ., 70, 241 (1986); Chem. Abstr., 106, 196115 (1987).PubMedGoogle Scholar
  115. 115.
    S. X. Cai, H.-Z. Zhang, J. A. Drewe, P. S. Reddy, S. Kasibhatla, J. D. Kuemmerle, and K. P. Ollis, PCT Int. Appl. WO 02100826; Chem. Abstr., 138, 39285 (2003).Google Scholar
  116. 116.
    Y. Tamura, J.-H. Kim, Y. Miki, H. Hayashi, and M. Ikeda, J. Heterocycl. Chem., 12, 481 (1975).Google Scholar
  117. 117.
    G. Kempter and P. Klung, East Ger. Pat. No. 84389; Chem. Abstr., 78, 72106 (1973).Google Scholar
  118. 118.
    Y. Sawa, German Patent 2520524; Chem. Abstr., 84, 90384 (1976).Google Scholar
  119. 119.
    Y. Sawa, Jpn. Patent No. 75154294; Chem. Abstr., 85, 94243 (1976).Google Scholar
  120. 120.
    L. L. Martin, S. J. Scott, M. N. Agnew, and L. L. Setescak, J. Org. Chem., 51, 3697 (1986).CrossRefGoogle Scholar
  121. 121.
    L. L. Martin, S. J. Scott, L. L. Setescak, and D. Van Engen, J. Heterocycl. Chem., 24, 1541 (1987).Google Scholar
  122. 122.
    L. L. Martin, L. L. Setescak, and S. J. Scott, US Patent 4742061; Chem. Abstr., 110, 114817 (1989).Google Scholar
  123. 123.
    R. Martinez, M. F. Rubio, G. G. Ramirez, T. Camacho, I. E. Linzaga, and C. Mancera, J. Heterocycl. Chem., 32, 827 (1995).Google Scholar
  124. 124.
    S. Hibino, E. Sugino, T. Choshi, and K. Sato, J. Chem. Soc., Perkin Trans. 1, 2429 (1988).Google Scholar
  125. 125.
    S. Ostrowski, Heterocycles, 43, 389 (1996).Google Scholar
  126. 126.
    J. Hou, J. Wang, G. Jiang, and J. Li, Youji Huaxue, 11, 615 (1991); Chem. Abstr., 116, 128709 (1992).Google Scholar
  127. 127.
    V. S. Kapoor and R. Karwayun, Indian J. Pharm. Sci., 57, 237 (1995); Chem. Abstr., 125, 58814 (1996).Google Scholar
  128. 128.
    C. E. Kaslow, J. D. Genzer, and J. C. Goodspeed, Proc. Indiana Acad. Sci., 59, 134 (1950); Chem. Abstr., 45, 8534 (1951).Google Scholar
  129. 129.
    S. V. Tolkunov, A. I. Khyzhan, and V. I. Dulenko, Khim. Geterotsikl. Soedin., 1849 (2003).Google Scholar
  130. 130.
    Y. Tamura and Y. Kita, Jpn. Patent No. 7659873; Chem. Abstr., 86, 72460 (1977).Google Scholar
  131. 131.
    Yu. V. Shklyaev, V. A. Glushkov, B. Ya. Syropyatov, A. V. Dolzhenko, N. B. Grigorev, A. V. Danilov, and V. G. Granik, Voprosy Biologicheskoi, Meditsinskoi i Farmatsevticheskoi Khimii, 50 (2003); Chem. Abstr., 140, 111252 (2004).Google Scholar
  132. 132.
    S. Jinbo, S. Kohno, K. Kashima, Y. Suzuki, H. Ohnishi, H. Kosuzume, K. Yamaguchi, and E. Mochida, Can. Patent 1189078; Chem. Abstr., 104, 68761 (1986).Google Scholar
  133. 133.
    H. Yanagisawa, T. Fujita, K. Fujimoto, T. Yoshioka, K. Wada, M. Oguchi, T. Fujiwara, and H. Horikoshi, Eur. Patent 708098; Chem. Abstr., 125, 58495 (1996).Google Scholar
  134. 134.
    H. Yagisawa, T. Fujita, K. Fujimoto, T. Yoshioka, K. Wada, M. Oguchi, T. Fujiwara, and H. Horikoshi, Jpn. Patent No. 09323929; Chem. Abstr., 128, 123813 (1998).Google Scholar
  135. 135.
    R. Ertan, O. Bozdag, B. Kesici, E. Palaska, and M. Ertan, Acta Pharm. Turc., 40, 131 (1998); Chem. Abstr., 130, 110144 (1999).Google Scholar
  136. 136.
    A. Buzas, F. Cossais, J. P. Jacquet, J. M. Melon, M. Pommier, and C. Seine, Chim. Ther., 5, 350 (1970).Google Scholar
  137. 137.
    S. X. Cai, J. F. W. Keana, and E. Weber, PCX Int. Appl. WO Pat. 9427605; Chem. Abstr., 122, 123144 (1995).Google Scholar
  138. 138.
    I. G. Tikhonova, I. I. Baskin, V. A. Palyulin, and N. S. Zefirov, J. Med. Chem., 46, 1609 (2003).CrossRefPubMedGoogle Scholar
  139. 139.
    K. Harsanyi, K. Takacs, R.Z. Somfai, E. Krompecher, L. Tardos, D. Korbonits, P. Kiss, and C. Gronczy, German Patent 1670497; Chem. Abstr., 79, 92022 (1973).Google Scholar
  140. 140.
    R. Foguet Ambros, E. Forne Felip, J. A. Ortiz Hernandez, A. Sacristan Munoz, and J. M. Castello Barenys, Espana Pat. 530100; Chem. Abstr., 107, 23252 (1987).Google Scholar
  141. 141.
    Y.-L. Chen, I.-L. Chen, C.-M. Lu, C-C. Tzeng, L.-T. Tsao, and J.-P. Wang, Bioorg. Med. Chem. Lett., 12, 387 (2004).CrossRefGoogle Scholar
  142. 142.
    Y.-L. Chen, C.-M. Lu, I.-L. Chen, L.-T. Tsao, and J.-P. Wang, J. Med. Chem., 45, 4689 (2002).CrossRefPubMedGoogle Scholar
  143. 143.
    D. W. Brooks, P. Bhatia, T. Kolasa, and A. O. Stewart, PCT Int. Appl. Wo Pat. 9602507; Chem. Abstr., 125, 33487 (1996).Google Scholar
  144. 144.
    D. W. Brooks, P. Bhatia, and T. Kolasa, PCT Int. Appl. Wo Pat. 9712865; Chem. Abstr., 126, 330554 (1997).Google Scholar
  145. 145.
    D. W. Brooks, P. Bhatia, and T. Kolasa, PCT Int. Appl. Wo Pat. 9712866; Chem. Abstr., 126, 330555 (1997).Google Scholar
  146. 146.
    D. W. Brooks, P. Bhatia, and T. Kolasa, S. African Pat. No. 9509262; Chem. Abstr., 126, 225226 (1997).Google Scholar
  147. 147.
    T. Kolasa, D. E. Gunn, P. Bhatia, A. Basha, R. A. Craig, A. O. Stewart, J. B. Bouska, R. R. Harris, K. I. Hulkower, P. E. Malo, R. L. Bell, G. W. Carter, and C. D. W. Brooks, J. Med. Chem., 43, 3322 (2000).CrossRefPubMedGoogle Scholar
  148. 148.
    T. Kolasa, D. E. Gunn, P. Bhatia, K. W. Woods, T. Gane, A. O. Stewart, J. B. Bouska, R. R. Harris, K. I. Hulkower, P. E. Malo, R. L. Bell, G. W. Carter, and C. D. W. Brooks, J. Med. Chem., 43, 690 (2000).CrossRefPubMedGoogle Scholar
  149. 149.
    J. Horiuchi, N. Shidara, M. Ito, Y. Shidori, and T. Kato, Jpn. Patent No. 6322521; Chem. Abstr., 112, 164956 (1990).Google Scholar
  150. 150.
    J. S. Skotnicki and R. M. Kearney, US Patent 5216162; Chem. Abstr., 119, 180752 (1993).Google Scholar
  151. 151.
    L. J. Chernesky and J. F. Dellaria, US Patent 5475009; Chem. Abstr., 124, 202230 (1996).Google Scholar
  152. 152.
    E. J. E. Freyne, A. H. M. Raeymaekers, and D. R. G. G. De Chaffoy de Courcelles, Eur. Patent 541153; Chem. Abstr., 119, 160282 (1993).Google Scholar
  153. 153.
    E. J. E. Freyne, A. H. M. Raeymaekers, D. R. G. G. De Chaffoy de Courcelles, US Patent 541153; Chem. Abstr., 125, 114624 (1996).Google Scholar
  154. 154.
    S. Matsumoto, Y. Kato, and K. Haze, PCT Int. Appl. Wo Pat. 0351844; Chem. Abstr., 139, 69160 (2003).Google Scholar
  155. 155.
    C.-C. Tzeng, Y.-L. Chen, and F.-N. Ko, US Patent 2002 61895; Chem. Abstr., 136, 401781 (2002).Google Scholar
  156. 156.
    K.-C. Fang, Y.-L. Chen, J.-Y. Sheu, T.-C. Wang, and C.-C. Tzeng, J. Med. Chem., 43, 3809 (2000).CrossRefPubMedGoogle Scholar
  157. 157.
    J.-Y. Sheu, Y.-L. Chen, C.-C. Tzeng, S.-L. Hsu, K.-C. Fang, and T.-C. Wang, Helv. Chim. Acta, 86, 2481 (2003).CrossRefGoogle Scholar
  158. 158.
    I.-L. Chen, Y.-L. Chen, C.-C. Tzeng, and I.-S. Chen, Helv. Chim. Acta, 85, 2214 (2002).CrossRefGoogle Scholar
  159. 159.
    Y.-L. Chen, C.-H. Chung, I.-L. Chen, P.-H. Chen, and H.-Y. Jeng, Bioorg. Med. Chem., 10, 2705 (2002).CrossRefPubMedGoogle Scholar
  160. 160.
    S. Dallavalle, A. Ferrari, B. Biosotti, L. Merlini, S. Pence, G. Gallo, M. Marzi, M. O. Tinti, R. Martinelli, C. Pisano, P. Carminati, N. Carenini, G. Beretta, P. Perego, A. De Cesare, G. Pratesi, and F. Zunino, J. Med. Chem., 44, 3264 (2001).CrossRefPubMedGoogle Scholar
  161. 161.
    U. M. Billhardt-Troughton, M. Rosner, R. Bender, and C. Meichsner, Eur. Patent 579968; Chem. Abstr., 121, 255665 (1994).Google Scholar
  162. 162.
    F. Gialdi and R. Ponci, Farm. Sci. e Tec. (Pavia), 6, 694 (1951); Chem. Abstr., 46, 11197 (1952).Google Scholar
  163. 163.
    G. Leandri, L. Maioli, and L. Ruzzier, Boll. Sci. Fac. Chim. Ind. Bologna, 15, 57 (1957); Chem. Abstr., 52, 7291 (1958).Google Scholar
  164. 164.
    D. M. Bailey, US Patent 3855228; Chem. Abstr., 82, 125294 (1975).Google Scholar
  165. 165.
    CIBA Ltd., British Patent 842968; Chem. Abstr., 55, 8434 (1961).Google Scholar
  166. 166.
    Y.-L. Chen, K..-C. Fang, J.-Y. Sheu, S.-L. Hsu, and C.-C. Tzeng, J. Med. Chem., 44, 2374 (2001).CrossRefPubMedGoogle Scholar
  167. 167.
    A. Feroumadi, A. Davood, M. Mirzaei, S. Emami, and M. H. Moshafi, Boll. Chim. Farm., 140, 411 (2001); Chem. Abstr., 137, 352876 (2002).PubMedGoogle Scholar
  168. 168.
    C. Y. Hong, Y. K. Kirn, J. H. Chang, S. H. Kim, H. Choi, D. H. Nam, Y. Z. Kim, and J. H. Kwak, J. Med. Chem., 40, 3584 (1997).CrossRefPubMedGoogle Scholar
  169. 169.
    S. J. Yoon, Y. H. Chung, C. W. Lee, J. S. Lee, N. D. Kim, Y. H. Jin, W. J. Song, I. H. Kim, W. Y. Yang, D. R. Choi, and J. H. Shin, PCT Int. Appl. Wo Pat. 0071541; Chem. Abstr., 134, 17486 (2001).Google Scholar
  170. 170.
    M. Okabe and R. C. Sun, Synthesis, 1160 (1992).Google Scholar
  171. 171.
    H. A. Albrecht, D. D. Keith, and C. C. Wei, Eur. Patent 550775; Chem. Abstr., 119, 270909 (1994).Google Scholar
  172. 172.
    E. Winkelman, W. Duerckheimer, and W. Raether, Eur. Patent 106284; Chem. Abstr., 101, 110761 (1984).Google Scholar
  173. 173.
    R. E. Armer, J. S. Barlow, C. J. Dutton, D. H. J. Greenway, S. D. W. Greenwood, N. Lad, A. P. Thompson, K.-W. Thong, and I. Tommasini, Bioorg. Med. Chem. Lett., 8, 1487 (1998).CrossRefPubMedGoogle Scholar
  174. 174.
    L. Abbruzzese, F. Gozzo, G. Rossi, M. Mosoero, S. Larusso, P. Bonola, and G. Tamburin, German Patent 2616089; Chem. Abstr., 86, 72468 (1977).Google Scholar
  175. 175.
    M. M. Safta, Rom. Pat. 80888; Chem. Abstr., 110, 192816 (1989).Google Scholar
  176. 176.
    P. J. De Fraine and B. L. Pilkington, PCT Int. Appl. Wo Pat. 9408968; Chem. Abstr., 121, 108822 (1994).Google Scholar
  177. 177.
    I. Kasahara, N. Ichikawa, C. Sano, and H. Yamanaka, Jpn. Patent No. 0903047; Chem. Abstr., 126, 171483 (1997).Google Scholar
  178. 178.
    H. P. Isenring, S. Trah, and B. Drechsel, US Patent 5965613; Chem. Abstr., 131, 271705 (1999).Google Scholar
  179. 179.
    N. Onodera and S. Someya, Jpn. Patent No. 62148470; Chem. Abstr., 108, 112260 (1988).Google Scholar
  180. 180.
    R. Schuetze, H. J. Loeher, F. Ziemer, K. Bauer, and H. Bieringer, Eur. Patent 492366; Chem. Abstr., 117, 150903 (1992).Google Scholar
  181. 181.
    J. Susumu, K. Shoichi, and K. Koichi, French Patent 2487346; Chem. Abstr., 97, 23644 (1982).Google Scholar
  182. 182.
    K. Nishijima, T. Shinkawa, M. Ito, H. Nishida, I. Yamamoto, Y. Onuki, H. Inaba, and S. Miyano, Eur. J. Med. Chem., 33, 763 (1998).CrossRefGoogle Scholar
  183. 183.
    N. Amlaiky, G. Leclerc, and G. Andermann, PCT Int. Appl. Wo Pat. 8402908; Chem. Abstr., 102, 24502 (1985).Google Scholar
  184. 184.
    P. Malatesta, G. Quaglia, and E. La Floresta, Farmaco, Ed. Sci., 23, 757 (1968).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • E. Abele
    • 1
  • R. Abele
    • 1
  • K. Rubina
    • 1
  • E. Lukevics
    • 1
  1. 1.Latvian Institute of Organic SynthesisRigaLatvia

Personalised recommendations