Skip to main content

Advertisement

Log in

Genetic diversity of Magnolia ashei characterized by SSR markers

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The Ashe magnolia (Magnolia ashei) is a deciduous small tree most noted for its large 1–2 foot long leaves and fragrant creamy white flowers. Although the species is adapted to and used in landscapes in many parts of the U.S., it is endemic only to Northwest Florida where it is limited to ten counties growing on undisturbed bluffs and ravine banks. The populations are highly fragmented and are threatened by degradation of habitat, leading the species to be listed as endangered in the state of Florida. SSR markers were developed to determine the genetic diversity of wild populations of M. ashei in order to guide long-term conservation strategies. 18 marker loci identified a total of 82 alleles that were used to characterize allelic diversity of M. ashei from 11 wild populations, 14 cultivated sources, five accessions of M. macrophylla, and three interspecific hybrids. Results indicated a higher than expected level of heterozygosity within populations, and a clear distinction between Eastern and Western populations; conservation efforts should therefore focus on maintaining these distinct groups in corresponding ex situ seed orchards to counteract pressures due to overcollection, pollution, and loss of habitat due to development. Clustering of individuals was similar using several analytical methods, indicating that despite relatively small sample sizes, our analysis is a valid reflection of the diversity among and relationships between these populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aboukhalid K, Machon N, Lambourdière J, Abdelkrim J, Bakha M, Douaik A, Korbecka-Glinka G, Gaboun F, Tomi F, Lamiri A, Al Faiz C (2017) Analysis of genetic diversity and population structure of the endangered Origanum compactum from Morocco, using SSR markers: Implication for conservation. Biol Conserv 212:172–182

    Article  Google Scholar 

  • Bataillon TM, David JL, Schoen D (1996) Neutral genetic markers and conservation genetics: simulated germplasm collections. Genetics 144:409–417

    PubMed  PubMed Central  CAS  Google Scholar 

  • Beier S, Thiel T, Münch T, Scholz U, Mascher M (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics 33:2583–2585

    Article  PubMed  PubMed Central  Google Scholar 

  • Bird CE, Karl SA, Smouse PE, Toonen RJ (2011) Detecting and measuring genetic differentiation. In: Held C, Koenemann D, Schubart C (eds) Phylogeography and population genetics in Crustacea,Crustacean Issues Series, vol 19. CRC Press, Boca Raton, pp. 31–55

    Chapter  Google Scholar 

  • Bonner FT (1990) Storage of seeds: potential and limitations for germplasm conservation. For Ecol Manag 35:35–43

    Article  Google Scholar 

  • Brunet J, Zalapa J, Guries R (2016) Conservation of genetic diversity in slippery elm (Ulmus rubra) in Wisconsin despite the devastating impact of Dutch elm disease. Conserv Genet 17:1001–1010

    Article  Google Scholar 

  • Budd C, Zimmer E, Freeland JR (2015) Conservation genetics of Magnolia acuminata, an endangered species in Canada: can genetic diversity be maintained in fragmented, peripheral populations? Conserv Genet 16:1359–1373. https://doi.org/10.1007/s10592-015-0746-9

    Article  Google Scholar 

  • Ceska JF, Affolter JM, Hamrick JL (1997) Developing a sampling strategy for Baptisia arachnifera based on allozyme diversity. Conserv Biol 11:1133–1139

    Article  Google Scholar 

  • Chambers GK, MacAvoy ES (2000) Microsatellites: consensus and controversy. Comp Biochem Physiol B 126:455–476

    Article  PubMed  CAS  Google Scholar 

  • Chazdon RL, Laestadius L (2016) Forest and landscape restoration: toward a shared vision and vocabulary. Am J Bot 103:1869–1871

    Article  PubMed  Google Scholar 

  • Cicuzza D, Newton A, Oldfield S (2007) The Red List of Magnoliaceae. Flora & Fauna International, Cambridge

    Google Scholar 

  • Cires E, DeSmet Y, Cuesta C, Goetghebeur P, Sharrock S, Gibbs D, Oldfield S, Kramer A, Samain M (2013) Gap analyses to support ex situ conservation of genetic diversity in Magnolia, a flagship group. Biodivers Conserv 22:567–590

    Article  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree (Argania spinosa L. Skeels) endemic to Morocco. Theor Appl Genet 92:832–839

    Article  PubMed  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Evol Syst 24:217–242

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Figlar RB (1997) Molecular analysis: a new look at umbrella magnolias. Arnoldia 57(4):22–29

    Google Scholar 

  • Figlar RB, Nooteboom HP (2004) Notes on Magnoliaceae IV. Blumea 49:87–100

    Article  Google Scholar 

  • Gilkison VA (2013) Comparisons of genetic diversity among disjunct populations of Magnolia tripetala. Honors project thesis, Western Kentucky University http://digitalcommons.wku.edu/stu_hon_theses/423. Accessed 4 Oct 2017

  • Goudet J (2002) FSTAT (Version 2.9.3.2): a program to estimated and test gene diversity and fixation indices https://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 1 Sept 2017

  • Griffith MP, Calonje M, Meerow AW, Tut F, Kramer AT, Hird AT, Magellan TM, Husby CE (2015) Can a botanic garden cycad collection capture the genetic diversity in a wild population? Int J Plant Sci 176:1–10

    Article  Google Scholar 

  • Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611

    Article  PubMed  CAS  Google Scholar 

  • Hedrick P (1999) Perspective: highly variable loci and their interpretation in evolution and conservation. Int J Org Evolut 53:313–318

    Article  Google Scholar 

  • Hedrick P (2001) Conservation genetics: where are we now? Trends Ecol Evolut 16:629–636

    Article  Google Scholar 

  • Henry VJ, Bandrowski AE, Pepin AS, Gonzalez BJ, Desfeux A (2014) OMICtools: an informative directory for multi-omic analysis. Database: J Biol Databases Curation. https://doi.org/10.1093/database/bau069

    Article  Google Scholar 

  • Hird A, Kramer AT (2013) Achieving target 8 of the global strategy for plant conservation: lessons learned from the North American collections assessment. Ann Missouri Bot Gard 99:161–166

    Article  Google Scholar 

  • Igarishi Y, Aihara H, Handa Y, Katsumata H, Fujii M, Nakano K, Hirao T (2017) Development and evaluation of microsatellite markers for the critically endangered birch Betula chichibuensis (Betulaceae). Appl Plant Sci 5(5):1700016. https://doi.org/10.3732/apps.1700016

    Article  Google Scholar 

  • Isagi Y, Kanazashi T, Suzuki W, Tanaka H, Abe T (1999) Polymorphic microsatellite DNA markers for Magnolia obovata Thunb. and their utility in related species. Mol Ecol 8:685–702

    Article  Google Scholar 

  • Jiang J, Wang J, Kang M, Sun W, Huang H (2011) Isolation and characterization of microsatellite loci in Tsoongiodendron odorum (Magnoliaceae). Am J Bot. https://doi.org/10.3732/ajb.1100221

    Article  PubMed  Google Scholar 

  • Jiménez JF, López-Romero C, Rosselló JA, Sánchez-Gómez P (2017) Genetic diversity of Narcissus tortifolius, an endangered endemic species from Southeastern Spain. Plant Biosyst 151(1):117–125. https://doi.org/10.1080/11263504.2015.1108937

    Article  Google Scholar 

  • Jost L (2008) Gst and its relatives do not measure differentiation. Mol Ecol 17:4015–4026. https://doi.org/10.1111/j.1365-294X.2008.03887.x

    Article  Google Scholar 

  • Kikuchi S, Isagi Y (2002) Microsatellite genetic variation in small and isolated populations of Magnolia sieboldii ssp. japonica. Heredity 88:313–321

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Park CW, Kim YD, Suh Y (2001) Phylogenetic relationships in family Magnoliaceae inferred from NDHF sequences. Am J Bot 88:717–728

    Article  PubMed  CAS  Google Scholar 

  • Latimer SD (1994) Magnolia ashei Weatherby (Magnoliaceae): biology and conservation of an endangered species. Dissertation, Tulane University

  • Ledig FT (1988) The conservation of diversity in forest trees: why and how should genes be conserved? Bioscience 38:471–479

    Article  Google Scholar 

  • Miller RF (1975) The deciduous magnolias of West Florida. Rhodora 77:64–75

    Google Scholar 

  • Neel MC, Cummings MC (2003) Effectiveness of conservation targets in capturing genetic diversity. Conserv Biol 17:219–229

    Article  Google Scholar 

  • Newton AC, Gow J, Robertson A, Williams-Linera G, Ramírez-Marcial N, González-Espinosa M, Allnutt TR, Ennos R (2008) Genetic variation in two rare endemic Mexican trees, Magnolia sharpie and Magnolia schiedeana. Silvae Genetica 57:348–356

    Article  Google Scholar 

  • Oldfield SF (2009) Botanic gardens and the conservation of tree species. Trends Plant Sci 14:581–583

    Article  PubMed  CAS  Google Scholar 

  • Olejniczak M, Krzyzosiak WJ (2006) Genotyping of simple sequence repeats-factors implicated in shadow band generation revisited. Electrophoresis 27:3724–3734

    Article  PubMed  CAS  Google Scholar 

  • Parris JK, Ranney TG, Knap HT, Baird WV (2010) Ploidy levels, relative genome sizes, and base pair composition in Magnolia. J Am Soc Hortic Sci 135:533–547

    Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure from multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Raymond M, Rousse F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Riggs LA (1990) Conserving genetic resources on-site in forest ecosystems. For Ecol Manag 35:45–68

    Article  Google Scholar 

  • Rohlf FJ (1998) NTSYS-pc 2.02. Numerical taxonomy and multivariate analysis system. Exeter Software: Applied Biostatistics Inc, Setauket

    Google Scholar 

  • Ross-Davis A, Ostry M, Woeste KE (2008) Genetic diversity of butternut (Juglans cinerea) and implications for conservation. Can J For Res 38:a889-907

    Article  CAS  Google Scholar 

  • Schoen DJ, Brown AHD (1993) Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc Natl Acad Sci USA 90:10623–10627

    Article  PubMed  CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Smit M, Lobdell M, Hird A, Frett J, Lyons R (2016) What is the value of the current collection of Magnolia macrophylla var. ashei for potential integrated conservation efforts? J Magnolia Soc Int 52:1–5

    Google Scholar 

  • Spongberg SA (1976) Magnoliaceae hardy in temperate North America. J Arnold Arboretum 57:250–312

    Article  Google Scholar 

  • Sun Y, Liu Y, Wang J, Guo Y, Huang H (2010) Ten polymorphic microsatellite markers in Michelia maudiae (Magnoliaceae). Am J Bot. https://doi.org/10.3732/ajb.1000332

    Article  PubMed  Google Scholar 

  • Suzuki R, Shimodaira H (2014) pvclust: hierarchical clustering with p-values via multiscale bootstrap resampling. R package version 1.3-2. https://CRAN.R-project.org/package=pvclust. Accessed 4 Oct 2017

  • Thien LB, Sawano S, Axuma H, Latimer S, Devall MS, Rosso S, Elakovich S, Gray VR, Jobes D (1998) The floral biology of the Magnoliaceae. In: Hunt D (ed) Magnolias and their allies: proceedings of an international symposium, Royal Holloway, University of London, Egham, Surrey, U.K., Royal Holloway, University of London: 37–58

  • Torres E, Iriondo JM, Perez C (2003) Genetic structure of an endangered plant, Antirrhinum microphyllum (Scrophulariaceae): allozyme and RAPD analysis. Am J Bot 90:85–92

    Article  PubMed  CAS  Google Scholar 

  • Ueno S, Setsuko S, Kawahara T, Yoshimaru H (2005) Genetic diversity and differentiation of the endangered Japanese endemic tree Magnolia stellata using nuclear and chloroplast microsatellite markers. Conserv Genet 6:563–574. https://doi.org/10.1007/s10592-005-9011-y

    Article  CAS  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucl Acids Res 40:e115

    Article  PubMed  CAS  Google Scholar 

  • USDA-ARS (2017) U.S. National Plant Germplasm System—GrinGlobal version 1.9.7.1. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx. Accessed 4 Oct 2017

  • USDA, NRCS (2017) The PLANTS Database, National Plant Data Team, Greensboro, NC. http://plants.usda.gov. Accessed 4 Oct 2017

  • Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect?—Systematics and the agony of choice. Biol Conserv 55:235–254

    Article  Google Scholar 

  • Weatherby CA (1926) A new magnolia from west Florida. Rhodora 28:35–36

    Google Scholar 

  • Wunderlin RP, Hansen BF, Franck AR, Essig FB (2016) Atlas of Florida plants http://florida.plantatlas.usf.edu/. Accessed 4 Oct 2017

  • Yang A, Zhang J, Yao X, Huang H (2011) Chloroplast microsatellite markers in Liriodendron tulipifera (Magnoliaceae) and cross-species amplification in L. chinense. Am J Bot. https://doi.org/10.3732/ajb.1000532

    Article  PubMed  Google Scholar 

  • Yang H, Li X, Liu D, Chen X, Li F, Qi X, Luo Z, Wang C (2016) Genetic diversity and population structure of the endangered medicinal plant Phellodendron amurense in China revealed by SSR markers. Biochem Syst Ecol 66:286–292. https://doi.org/10.1016/j.bse.2016.04.018

    Article  CAS  Google Scholar 

  • Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, McCown B, Harbut R, Simon P (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Ma Y, Sun W, Wen X, Milne R (2012) High genetic diversity and low differentiation of Michelia coriacea (Magnoliaceae), a critically endangered endemic in Southeast Yunnan, China. Int J Mol Sci 13:4396–4411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank those who provided access and invaluable assistance in our collection efforts, including the Northwest Florida Water Management District, Florida Park Service, Florida Department of Agriculture and Consumer Services, The Nature Conservancy, the Arnold Arboretum of Harvard University, Ron Miller of Pensacola, Florida, and Rick Lewandowski of Orange, Texas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Pooler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Kohn, C., Conrad, K., Kramer, M. et al. Genetic diversity of Magnolia ashei characterized by SSR markers. Conserv Genet 19, 923–936 (2018). https://doi.org/10.1007/s10592-018-1065-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-018-1065-8

Keywords

Navigation