Advertisement

Conservation Genetics

, Volume 17, Issue 5, pp 1125–1135 | Cite as

Local-scale genetic structure in the Japanese wild boar (Sus scrofa leucomystax): insights from autosomal microsatellites

  • Ryo Tadano
  • Aya Nagai
  • Junji Moribe
Research Article

Abstract

The Japanese wild boar (Sus scrofa leucomystax) is one of the most widely distributed mammals in Japan. However, its population structure and pattern of gene flow at a regional level are poorly understood. In this study, we investigated the local-scale genetic structure of the Japanese wild boar. In total, 172 individuals sampled in Gifu Prefecture, central Japan, were genotyped for 29 autosomal microsatellite loci. Significant genetic differentiations (F ST = 0.020–0.128) were detected among some geographical areas. In addition, in the overall population (n = 172), all loci deviating from the Hardy–Weinberg equilibrium exhibited a significant deficit of heterozygotes. These results suggest the presence of genetic substructuring in the local population. Moreover, Bayesian cluster analysis revealed the presence of substructuring within the population, despite the relatively small study area (10,621 km2). Spatial Bayesian cluster analysis showed that the boundaries of subpopulations were generally consistent with landscape features (e.g. main rivers, urban areas and road and train networks). Our study implies that these landscape features play a significant role as a barrier to dispersal and gene flow in the local population of the Japanese wild boar.

Keywords

Gene flow Genetic structure Japanese wild boar Local population Microsatellite 

Notes

Acknowledgments

The authors thank the members of hunting clubs in Gifu Prefecture and Mr. Takahiro Yokota (Gifu Prefectural Government) for providing wild boar samples. We thank Shobudani Farm (Ibigawa, Gifu, Japan) for providing pig samples. We are also grateful to Mr. Satoshi Wada (Gifu Prefectural Government) for assistance in making the figures. Helpful comments from two anonymous reviewers improved the manuscript. This work was supported in part by the 2015 grant from Gifu University to R. Tadano.

Supplementary material

10592_2016_848_MOESM1_ESM.pdf (4.6 mb)
Supplementary material 1 (PDF 4747 kb)

References

  1. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment polymorphisms. Am J Hum Genet 32:314–331PubMedPubMedCentralGoogle Scholar
  2. Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457CrossRefPubMedGoogle Scholar
  3. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedPubMedCentralGoogle Scholar
  4. Cullingham CI, Kyle CJ, Pond BA, Rees EE, White BN (2009) Different permeability of rivers to raccoon gene flow corresponds to rabies incidence in Ontario, Canada. Mol Ecol 18:43–53PubMedGoogle Scholar
  5. Dieringer D, Schlötterer C (2003) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169CrossRefGoogle Scholar
  6. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  7. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839CrossRefPubMedGoogle Scholar
  8. Epps CW, Palsbøll PJ, Wehausen JD, Roderick GK, Ramey RR II, McCullough DR (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029–1038CrossRefGoogle Scholar
  9. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  10. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  11. FAO (2011) Molecular genetic characterization of animal genetic resources. FAO Animal Production and Health Guidelines. No. 9. FAO. http://www.fao.org/docrep/014/i2413e/i2413e00.pdf Accessed 7 Dec 2012
  12. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) Version 3.6. Department of Genome Sciences, University of Washington, SeattleGoogle Scholar
  13. Ferreira E, Souto L, Soares AMVM, Fonseca C (2009) Genetic structure of the wild boar population in Portugal: evidence of a recent bottleneck. Mamm Biol 74:274–285Google Scholar
  14. Frantz AC, Cellina S, Krier A, Schley L, Burke T (2009) Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: clusters or isolation by distance? J Appl Ecol 46:493–505CrossRefGoogle Scholar
  15. Frantz AC, Bertouille S, Eloy MC, Licoppe A, Chaumont F, Flamand MC (2012) Comparative landscape genetic analyses show a Belgian motorway to be a gene flow barrier for red deer (Cervus elaphus), but not wild boars (Sus scrofa). Mol Ecol 21:3445–3457CrossRefPubMedGoogle Scholar
  16. Gifu Prefectural Government (2012) Choujyu hogo-ku touichi-zu (wildlife protection area map). Otohime Insatusha, Ehime (in Japanese) Google Scholar
  17. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm
  18. Guillot G, Mortier F, Estoup A (2005) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5:712–715CrossRefGoogle Scholar
  19. Hajji GM, Zachos FE (2011) Mitochondrial and nuclear DNA analyses reveal pronounced genetic structuring in Tunisian wild boar Sus scrofa. Eur J Wildl Res 57:449–456CrossRefGoogle Scholar
  20. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefPubMedGoogle Scholar
  21. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106CrossRefPubMedGoogle Scholar
  22. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163CrossRefPubMedGoogle Scholar
  23. Luetkemeier ES, Sodhi M, Schook LB, Malhi RS (2010) Multiple asian pig origins revealed through genomic analyses. Mol Phylogenet Evol 54:680–686CrossRefPubMedGoogle Scholar
  24. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247CrossRefPubMedGoogle Scholar
  25. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  26. Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170CrossRefPubMedGoogle Scholar
  27. Okumura N, Ishiguro N, Nakano M, Hirai K, Matsui A, Sahara M (1996) Geographic population structure and sequence divergence in the mitochondrial DNA control region of the Japanese wild boar (Sus scrofa leucomystax), with reference to those of domestic pigs. Biochem Genet 34:179–189CrossRefPubMedGoogle Scholar
  28. Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation based exploration of accuracy and power. Mol Ecol 13:55–65CrossRefPubMedGoogle Scholar
  29. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pérez-Espona S, Pérez-Barbería FJ, McLeod JE, Jiggins CD, Gordon IJ, Pemberton JM (2008) Landscape features affect gene flow of Scottish highland red deer (Cervus elaphus). Mol Ecol 17:981–996CrossRefPubMedGoogle Scholar
  31. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  32. Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539CrossRefPubMedGoogle Scholar
  33. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  34. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci 94:9197–9201CrossRefPubMedPubMedCentralGoogle Scholar
  35. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  36. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  37. Scandura M, Iacolina L, Cossu A, Apollonio M (2011) Effects of human perturbation on the genetic make-up of an island population: the case of the Sardinian wild boar. Heredity 106:1012–1020CrossRefPubMedGoogle Scholar
  38. Watanobe T, Ishiguro N, Nakano M (2003) Phylogeography and population structure of the Japanese wild boar Sus scrofa leucomystax: mitochondrial DNA variation. Zool Sci 20:1477–1489CrossRefPubMedGoogle Scholar
  39. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  40. Wilson RE, Farley SD, McDonough TJ, Talbot SL, Barboza PS (2015) A genetic discontinuity in moose (Alces alces) in Alaska corresponds with fenced transportation infrastructure. Conserv Genet 16:791–800CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Faculty of Applied Biological SciencesGifu UniversityGifuJapan
  2. 2.Research Center for Wildlife ManagementGifu UniversityGifuJapan

Personalised recommendations