Conservation Genetics

, Volume 16, Issue 5, pp 1225–1241 | Cite as

Snakes on an island: independent introductions have different potentials for invasion

  • Catalina Monzón-Argüello
  • Clara Patiño-Martínez
  • Fredrik Christiansen
  • Ramón Gallo-Barneto
  • Miguel Ángel Cabrera-Pérez
  • Miguel Ángel Peña-Estévez
  • Luis Felipe López-Jurado
  • Patricia L. M. Lee
Research Article


Snakes introduced to islands can be devastating to naïve native fauna. However, introduced populations must establish before range expansion (invasion) can occur. The factors that can determine successful invasion are those associated with the introduction event (e.g., characteristics of the founding population), the location (e.g., suitable environment and prey availability) and the species (e.g. life history characteristics). Here, we collected morphometric, ecological and genetic data on the recently introduced California Kingsnake (Lampropeltis californiae) in Gran Canaria. We found that snakes occurring at two locations a few 10 s of km apart do not represent the same population. Genetic analyses confirmed significant genetic difference (F ST  = 0.184; D est  = 0.341), and that despite being inbred (F is  = 0.245–0.257) the populations had high levels of diversity (H o  = 0.485–0.490; allelic richness = 4.875–6.364). Snakes at the different Gran Canaria locations were significantly different in morphology (colouration, mass, length and age), fitness (egg production) and diet (rodents, skinks, lizards and geckos), supporting a hypothesis of separate founding groups in combination with local environmental heterogeneity leading to variation between these populations. We concluded that one population was more successful than the other in reproduction and recruitment, and may be having a greater impact on endemic reptiles. We recommend greater eradication effort for this population, as well as monitoring of local fauna at all locations to access the impact of predation.


California Kingsnake Colonization Fecundity Long-term viability Lampropeltis californiae Morphometrics 



All snakes were collected by personnel working for the European Project LIFE10 NAT/ES/000565 LAMPROPELTIS under EU Commission approval ( We thank José Miguel Sánchez, Alejandro Ramírez, Jorge Fernando Saavedra, Francisco Alarcón, Airam Eiroa, Juan Sánchez, Aitor Ojeda, Francisco Vera, Natanael Martín, Purificación Ventura, Antonio Alemán, Antonia Mª Lorenzo, José Luis Peña, Ivan Socorro, Ivan Sánchez, Anibal Peña, Alejandro Falcón y Yeray Bolaños, Rafael Riera, José Bergadá, Jim Pethe, Carlos Canella. We are grateful to Nieves González and Pablo Manent for laboratory facilities. We gratefully acknowledge the La Solana y San Roque (Telde-Valsequillo) habitants. LFLJ conceived and designed the study, and contributed laboratory facilities. Access to samples and project data, and funding were obtained by RG, MACP and MAP (European Project LIFE10NAT/ES/000565 Lampropeltis). CPM collected and processed the morphological and ecological data. CMA collected and analysed the genetic data, while FC designed, executed and interpreted the statistical analyses for the morphological, ecological and climate data, and both wrote the methods and results. PLML interpreted the results and wrote the paper, with contributions from all authors.

Supplementary material

10592_2015_734_MOESM1_ESM.docx (564 kb)
Supplementary material 1 (DOCX 564 kb)
10592_2015_734_MOESM2_ESM.xlsx (57 kb)
Supplementary material 2 (XLSX 57 kb)


  1. Barahona F, Evans SE, Mateo JA, Garcia-Marquez M, Lopez-Jurado LF (2000) Endemism, gigantism and extinction in island lizards: the genus Gallotia on the Canary Islands. J Zool 250:373–388CrossRefGoogle Scholar
  2. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2001) GENETIX version 4.02, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR. 4.02 edn. Université de Montpellier II, Montpellier (France)Google Scholar
  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B-Methodol 57:289–300Google Scholar
  4. Bilgin R (2007) Kgtests: a simple Excel Macro program to detect signatures of population expansion using microsatellites. Mol Ecol Notes 7:416–417. doi: 10.1111/j.1471-8286.2006.01671.x CrossRefGoogle Scholar
  5. Blackburn TM et al (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339. doi: 10.1016/j.tree.2011.03.023 CrossRefPubMedGoogle Scholar
  6. Bock DG, Zhan A, Lejeusne C, MacIsaac HJ, Cristescu ME (2011) Looking at both sides of the invasion: patterns of colonization in the violet tunicate Botrylloides violaceus. Mol Ecol 20:503–516. doi: 10.1111/j.1365-294X.2010.04971.x CrossRefPubMedGoogle Scholar
  7. Bohn T, Sandlund OT, Amundsen PA, Primicerio R (2004) Rapidly changing life history during invasion. Oikos 106:138–150. doi: 10.1111/j.0030-1299.2004.13022.x CrossRefGoogle Scholar
  8. Bonnet X, Shine R, Naulleau G, Vacher-Vallas M (1998) Sexual dimorphism in snakes: different reproductive roles favour different body plans. Proc Royal Soc B Biol Sci 265:179–183CrossRefGoogle Scholar
  9. Cabrera-Pérez MÁ, Gallo-Barneto R, Esteve I, Patiño-Martínez C, López-Jurado LF (2012) The management and control of the California kingsnake in Gran Canaria (Canary Islands): Project LIFE + Lampropeltis. Aliens: The Invasive Species Bulletin Newsletter of the IUCN/SSC Invasive Species Specialist Group: 20–28Google Scholar
  10. Carranza S, Arnold EN, Mateo JA, Geniez P (2002) Relationships and evolution of the North African geckos, Geckonia and Tarentola (Reptilia: Gekkonidae), based on mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 23:244–256. doi: 10.1016/S1055-7903(02)00024-6 CrossRefPubMedGoogle Scholar
  11. Chiucchi JE, Gibbs HL (2010) Similarity of contemporary and historical gene flow among highly fragmented populations of an endangered rattlesnake. Mol Ecol 19:5345–5358. doi: 10.1111/j.1365-294X.2010.04860.x CrossRefPubMedGoogle Scholar
  12. Colautti R, Grigorovich I, MacIsaac H (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037. doi: 10.1007/s10530-005-3735-y CrossRefGoogle Scholar
  13. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedCentralPubMedGoogle Scholar
  14. Crawford NG (2010) SMOGD: software for the measurement of genetic diversity. Mol Ecol Resour 10:556–557. doi: 10.1111/j.1755-0998.2009.02801.x CrossRefPubMedGoogle Scholar
  15. Detwiler J, Criscione C (2014) Recently introduced invasive geckos quickly reach population genetic equilibrium dynamics. Biological Invasions: 1–15. doi: 10.1007/s10530-014-0694-1
  16. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449. doi: 10.1111/j.1365-294X.2007.03538.x CrossRefPubMedGoogle Scholar
  17. Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (N-e) from genetic data. Mol Ecol Resour 14:209–214. doi: 10.1111/1755-0998.12157
  18. Dubey S, Sumner J, Pike DA, Keogh JS, Webb JK, Shine R (2011) Genetic connectivity among populations of an endangered snake species from Southeastern Australia (Hoplocephalus bungaroides, Elapidae). Ecol Evol 1:218–227. doi: 10.1002/ece3.25 CrossRefPubMedCentralPubMedGoogle Scholar
  19. Feiner ZS, Aday DD, Rice JA (2012) Phenotypic shifts in white perch life history strategy across stages of invasion. Biol Invasions 14:2315–2329. doi: 10.1007/s10530-012-0231-z CrossRefGoogle Scholar
  20. Fritts TH, Rodda GH (1998) The role of introduced species in the degradation of island ecosystems: A case history of Guam. Annu Rev Ecol Syst 29:113–140. doi: 10.1146/annurev.ecolsys.29.1.113 CrossRefGoogle Scholar
  21. Gautschi B, Widmer A, Joshi J, Koella JC (2002) Increased frequency of scale anomalies and loss of genetic variation in serially bottlenecked populations of the dice snake, Natrix tessellata. Conserv Genet 3:235–245. doi: 10.1023/a:1019924514465 CrossRefGoogle Scholar
  22. Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  23. Guicking D, Griffiths RA, Moore RD, Joger U, Wink M (2006) Introduced alien or persecuted native? Resolving the origin of the viperine snake (Natrix maura) on Mallorca. Biodivers Conserv 15:3045–3054. doi: 10.1007/s10531-005-4878-y CrossRefGoogle Scholar
  24. Herben T (2005) Species pool size and invasibility of island communities: a null model of sampling effects. Ecol Lett 8:909–917CrossRefGoogle Scholar
  25. Hubbs B (2009) Common Kingsnakes: a natural history of Lampropeltis getula. Tricolor booksGoogle Scholar
  26. Jackson K, Kley NJ, Brainerd EL (2004) How snakes eat snakes: the biomechanical challenges of ophiophagy for the California kingsnake, Lampropeltis getula californiae (Serpentes : Colubridae). Zoology 107:191–200. doi: 10.1016/j.zool.2004.06.001 CrossRefPubMedGoogle Scholar
  27. Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555. doi: 10.1111/j.1755-0998.2009.02787.x CrossRefPubMedGoogle Scholar
  28. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026. doi: 10.1111/j.1365-294X.2008.03887.x CrossRefPubMedGoogle Scholar
  29. Juan C, Emerson BC, Oromı P, Hewitt GM (2000) Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. Trends Ecol Evol 15:104–109. doi: 10.1016/S0169-5347(99)01776-0 CrossRefPubMedGoogle Scholar
  30. King RB (1989) Sexual dimorphism in snake tail length: sexual selection, natural selection, or morphological constraint? Biol J Linn Soc 38:133–154. doi: 10.1111/j.1095-8312.1989.tb01570.x CrossRefGoogle Scholar
  31. Kolbe JJ, Glor RE, Schettino LR, Lara AC, Larson A, Losos JB (2007) Multiple sources, admixture, and genetic variation in introduced Anolis lizard populations. Conserv Biol 21:1612–1625. doi: 10.1111/j.1523-1739.2007.00826.x CrossRefPubMedGoogle Scholar
  32. Kolbe JJ, VanMiddlesworth PS, Losin N, Dappen N, Losos JB (2012) Climatic niche shift predicts thermal trait response in one but not both introductions of the Puerto Rican lizard Anolis cristatellus to Miami, Florida, USA. Ecology and Evolution 2:1503–1516. doi: 10.1002/ece3.263 CrossRefPubMedCentralPubMedGoogle Scholar
  33. Kowarik I (2003) Human agency in biological invasions: secondary releases foster naturalisation and population expansion of alien plant species. Biol Invasions 5:293–312. doi: 10.1023/B:BINV.0000005574.15074.66 Google Scholar
  34. Liu H, Stiling P (2006) Testing the enemy release hypothesis: a review and meta-analysis. Biol Invasions 8:1535–1545. doi: 10.1007/s10530-005-5845-y CrossRefGoogle Scholar
  35. Liu X, Li X, Liu Z, Tingley R, Kraus F, Guo Z, Li Y (2014) Congener diversity, topographic heterogeneity and human-assisted dispersal predict spread rates of alien herpetofauna at a global scale. Ecology LettersGoogle Scholar
  36. López-Jurado LF (1992) Synopsis of the canarian herpetofauna. Revista Española de Herpetología (Madrid) 6:107–118Google Scholar
  37. López-Jurado LF (1998) Chalcides sexlineatus Steindachner, 1891—Gestreifter Kanarenskink, Gran Canaria-Skink. In: Bischoff W (ed) Die Reptilien der Kanarischen Inseln, der Selvagens-Inseln und des Madeira-Archipels. Handbuch der Reptilien und Amphibien Europas. Quelle-Verlag, Wiebelsheim, pp 201–213Google Scholar
  38. Marshall JCJ, Kingsbury BA, Minchella DJ (2009) Microsatellite variation, population structure, and bottlenecks in the threatened copperbelly water snake. Conserv Genet 10:465–476. doi: 10.1007/s10592-008-9624-z CrossRefGoogle Scholar
  39. Martinez-Morales MA, Cuaron AD (1999) Boa constrictor, an introduced predator threatening the endemic fauna on Cozumel Island, Mexico. Biodivers Conserv 8:957–963. doi: 10.1023/a:1008815004072 CrossRefGoogle Scholar
  40. Melbourne BA, Hastings A (2009) Highly variable spread rates in replicated biological invasions: fundamental limits to predictability. Science 325:1536–1539. doi: 10.1126/science.1176138 CrossRefPubMedGoogle Scholar
  41. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  42. Nogales M, Rodriguez-Luengo JL, Marrero P (2006) Ecological effects and distribution of invasive non-native mammals on the Canary Islands. Mammal Rev 36:49–65. doi: 10.1111/j.1365-2907.2006.00077.x CrossRefGoogle Scholar
  43. Paolucci EM, MacIsaac HJ, Ricciardi A (2013) Origin matters: alien consumers inflict greater damage on prey populations than do native consumers. Div Distribut 19:988–995. doi: 10.1111/ddi.12073 CrossRefGoogle Scholar
  44. Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mole Ecol Notes 6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  45. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. doi: 10.1093/bioinformatics/bts460 CrossRefPubMedCentralPubMedGoogle Scholar
  46. Petter-Rousseaux A (1953) Recherches sur la croissance et le cycle d’activité testiculaires de Natrix natrix helvetica (Lacépède). Terre et Vie 4:175–223Google Scholar
  47. Pleguezuelos JM, Feriche M, Reguero S, Santos X (2010) Patterns of tail breakage in the ladder snake (Rhinechis scalaris) reflect differential predation pressure according to body size. Zoology 113:269–274. doi: 10.1016/j.zool.2010.03.002 CrossRefPubMedGoogle Scholar
  48. Pyron RA, Burbrink FT (2009) Lineage diversification in a widespread species: roles for niche divergence and conservatism in the common kingsnake, Lampropeltis getula. Mol Ecol 18:3443–3457. doi: 10.1111/j.1365-294X.2009.04292.x CrossRefGoogle Scholar
  49. R-Development-Core-Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  50. Raymond M, Rousset F (1995) Genepop (Version-1.2)—population-genetics software for exact tests and ecumenicism. J Heredity 86:248–249Google Scholar
  51. Reich DE, Feldman MW, Goldstein DB (1999) Statistical properties of two tests that use multilocus data sets to detect population expansions. Mol Biol Evol 16:453–466CrossRefGoogle Scholar
  52. Reynolds RG, Puente-Rolon AR, Reed RN, Revell LJ (2013) Genetic analysis of a novel invasion of Puerto Rico by an exotic constricting snake. Biol Invasions 15:953–959. doi: 10.1007/s10530-012-0354-2 CrossRefGoogle Scholar
  53. Rodriguez D, Forstner MRJ, McBride DL, Densmore LD, Dixon JR (2012) Low genetic diversity and evidence of population structure among subspecies of Nerodia harteri, a threatened water snake endemic to Texas. Conserv Genet 13:977–986. doi: 10.1007/s10592-012-0346-x CrossRefGoogle Scholar
  54. Row JR, Blouin-Demers G, Lougheed SC (2010) Habitat distribution influences dispersal and fine-scale genetic population structure of eastern foxsnakes (Mintonius gloydi) across a fragmented landscape. Mol Ecol 19:5157–5171. doi: 10.1111/j.1365-294X.2010.04872.x CrossRefPubMedGoogle Scholar
  55. Shine R, Goiran C, Shine T, Fauvel T, Brischoux F (2012) Phenotypic divergence between seasnake (Emydocephalus annulatus) populations from adjacent bays of the New Caledonian Lagoon. Biol J Linnean Soc 107:824–832. doi: 10.1111/j.1095-8312.2012.01971.x CrossRefGoogle Scholar
  56. Shine R, Olsson MM, Moore IT, LeMaster MP, Mason RT (1999) Why do male snakes have longer tails than females? Proc Royal Soc B Biol Sci 266:2147–2151CrossRefGoogle Scholar
  57. Steen DA et al (2014) Copperheads are common when kingsnakes are not: relationships between the abundances of a predator and one of their prey. Herpetologica 70:69–76CrossRefGoogle Scholar
  58. Toonen R, Hughes S (2001) Increased throughput for fragment analysis on ABI Prism 377 Automated Sequencer using a membrane comb and STRand software. Biotechniques 31:1320–1324PubMedGoogle Scholar
  59. Ursenbacher S, Monney JC, Fumagalli L (2009) Limited genetic diversity and high differentiation among the remnant adder (Vipera berus) populations in the Swiss and French Jura Mountains. Conserv Genet 10:303–315. doi: 10.1007/s10592-008-9580-7 CrossRefGoogle Scholar
  60. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  61. van Wilgen BW, Biggs HC (2011) A critical assessment of adaptive ecosystem management in a large savanna protected area in South Africa. Biol Conserv 144:1179–1187. doi: 10.1016/j.biocon.2010.05.006 CrossRefGoogle Scholar
  62. Vazquez-Dominguez E, Suarez-Atilano M, Booth W, Gonzalez-Baca C, Cuaron AD (2012) Genetic evidence of a recent successful colonization of introduced species on islands: Boa constrictor imperator on Cozumel Island. Biol Invasions 14:2101–2116. doi: 10.1007/s10530-012-0217-x CrossRefGoogle Scholar
  63. Wang J (2007) Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet Res 89:135–153. doi: 10.1017/s0016672307008798 CrossRefPubMedGoogle Scholar
  64. Werler J, Dixon J (2000) Texas snakes. University of Texas Press, AustinGoogle Scholar
  65. Winne CT, Willson JD, Todd BD, Andrews KM, Gibbons JW (2007) Enigmatic decline of a protected population of Eastern Kingsnakes, Lampropeltis getula, in South Carolina. Copeia 3:507–519CrossRefGoogle Scholar
  66. Zhan AB et al (2012) Scale-dependent post-establishment spread and genetic diversity in an invading mollusc in South America. Div Distribut 18:1042–1055. doi: 10.1111/j.1472-4642.2012.00894.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Catalina Monzón-Argüello
    • 1
    • 2
  • Clara Patiño-Martínez
    • 2
  • Fredrik Christiansen
    • 3
    • 4
  • Ramón Gallo-Barneto
    • 5
  • Miguel Ángel Cabrera-Pérez
    • 6
  • Miguel Ángel Peña-Estévez
    • 7
  • Luis Felipe López-Jurado
    • 1
  • Patricia L. M. Lee
    • 3
    • 8
  1. 1.Department of Biology, Faculty of Marine Sciences, Campus de TafiraUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
  2. 2.Asociación para el Desarrollo Sostenible y Conservación de la Biodiversidad (ADS)Las PalmasSpain
  3. 3.Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityWarrnamboolAustralia
  4. 4.Cetacean Research Unit, School of Veterinary and Life SciencesMurdoch UniversityMurdochAustralia
  5. 5.Área de Medio Ambiente. Gestión y Planeamiento Territorial y Ambiental (GesPlan S. A.)Las PalmasSpain
  6. 6.Servicio de Biodiversidad. Dirección General de Protección de la NaturalezaGobierno de CanariasLas PalmasSpain
  7. 7.Servicio de Medio Ambiente y EmergenciasCabildo de Gran CanariaLas PalmasSpain
  8. 8.Department of Biosciences, College of ScienceSwansea UniversitySwanseaUK

Personalised recommendations