Conservation Genetics

, Volume 16, Issue 4, pp 965–978 | Cite as

Differences in population connectivity of a benthic marine invertebrate Evechinus chloroticus (Echinodermata: Echinoidea) across large and small spatial scales

  • Meredith M. Nagel
  • Mary A. Sewell
  • Shane D. Lavery
Research Article


Marine organisms with a planktonic larval stage have the potential to be transported substantial distances, with the distance travelled depending on factors such as pelagic larval duration (PLD) and physical factors such as ocean currents and geographical barriers. The endemic New Zealand sea urchin, Evechinus chloroticus, is found throughout the North and South Islands, and with a PLD of approximately 30 days, is expected to show strong connectivity among all populations. Population connectivity and genetic differentiation were examined over both a geographically broad scale, throughout New Zealand, and on a fine scale (within the Hauraki Gulf on the North Island). Significant genetic differentiation was revealed through analysis of mitochondrial COI sequences (FST = 0.096 p < 0.01) and six microsatellite loci (FST = 0.0120 p < 0.008). This was consistent with a division between northern and southern regions located to the south of Cook Strait, at a phylogeographic barrier previously reported in other New Zealand benthic marine invertebrates. Fine-scale population differentiation was evident between the inner and outer Hauraki Gulf populations, and between the most northern populations and the remainder of the North Island. Together, this study suggests that strong coastal currents, upwelling in the Cook Strait region, and geographic distance (approximately 2000 km north to south) may all be acting to restrict gene flow and contribute to genetic divergence among populations of E. chloroticus.


Population connectivity Population genetics Gene flow Pelagic larvae Phylogeographic barrier Sea urchin 



We would like to acknowledge all the assistance in collecting samples from the students and staff of the Molecular Ecology Laboratory and Marine Ecology Laboratory at the University of Auckland, thank you to S. Nagel, A. Veale, M. Hudson, R. Gallego, S. Knudson, E. Zarate, E. Baker, and S. Connell. We would also like to thank Dr. Mike Barker from the University of Otago, Dunedin and Phred Dobbins from the New Zealand Department of Conservation for obtaining samples from Stewart Island. This research was supported by the Faculty of Science, University of Auckland, and the Department of Conservation.

Supplementary material

10592_2015_716_MOESM1_ESM.pdf (67 kb)
Supplementary material 1 (PDF 67 kb)
10592_2015_716_MOESM2_ESM.pdf (81 kb)
Supplementary material 2 (PDF 81 kb)


  1. Addison JA, Hart MW (2004) Analysis of population genetic structure of the green sea urchin (Strongylocentrotus droebachiensis) using microsatellites. Mar Biol 144:243–251. doi: 10.1007/s00227-003-1193-6 CrossRefGoogle Scholar
  2. Andrew NL (1988) Ecological aspects of the common sea-urchin, Evechinus chloroticus, in northern New Zealand—a review. N Z J Mar Freshwat Res 22:415–426CrossRefGoogle Scholar
  3. Apte S, Gardner JPA (2002) Population genetic subdivision in the New Zealand greenshell mussel (Perna canaliculus) inferred from single-strand conformation polymorphism analysis of mitochondrial DNA. Mol Ecol 11:1617–1628PubMedCrossRefGoogle Scholar
  4. Avise JC (1994) Molecular markers, natural history, and evolution. Chapman and Hall, New YorkCrossRefGoogle Scholar
  5. Ayers KL, Waters JM (2005) Marine biogeographic disjunction in central New Zealand. Mar Biol 147:1045–1052. doi: 10.1007/s00227-005-1632-7 CrossRefGoogle Scholar
  6. Balloux F, Lugon-Moulin N (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11:155–165. doi: 10.1046/j.0962-1083.2001.01436.x PubMedCrossRefGoogle Scholar
  7. Banks SC, Piggott MP, Williamson JE, Bove U, Holbrook NJ, Beheregaray LB (2007) Oceanic variability and coastal topography shape genetic structure in a long-dispersing sea urchin. Ecology 88:3055–3064PubMedCrossRefGoogle Scholar
  8. Barker M (2007) Chapter 16 ecology of Evechinus chloroticus. Dev Aquacult Fish Sci 37:319–338CrossRefGoogle Scholar
  9. Benham CE, Supernault KJ, Burton RS (2012) Genetic assessment of the population connectivity of the red urchin (Strongylocentrotus franciscanus). J Exp Mar Biol Ecol 432:47–54. doi: 10.1016/j.jembe.2012.07.011 CrossRefGoogle Scholar
  10. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188CrossRefGoogle Scholar
  11. Birt TP (2000) Polymerase chain reaction. In: Baker AJ (ed) Molecular methods in ecology. Blackwell Science, Oxford, pp 50–64Google Scholar
  12. Botsford LW, Hastings A, Gaines SD (2001) Dependence of sustainability on the configuration of marine reserves and larval dispersal distance. Ecol Lett 4:144–150CrossRefGoogle Scholar
  13. Botsford LW, White JW, Coffroth MA, Paris CB, Planes S, Shearer TL, Thorrold SR, Jones GP (2009) Connectivity and resilience of coral reef metapopulations in marine protected areas: matching empirical efforts to predictive needs. Coral Reefs 28:327–337. doi: 10.1007/s00338-009-0466-z PubMedCentralPubMedCrossRefGoogle Scholar
  14. Broquet T, Viard F, Yearsley JM (2013) Genetic drift and collective dispersal can result in chaotic genetic patchiness. Evolution 67:1660–1675. doi: 10.1111/j.1558-5646.2012.01826.x PubMedCrossRefGoogle Scholar
  15. Chiswell SM (2003) Circulation within the Wairarapa Eddy, New Zealand. N Z J Mar Freshwat Res 37:691–704CrossRefGoogle Scholar
  16. Clarke K, Gorely R (2006) Primer V6: User Manual/Tutorial.PRIMER-E, PlymouthGoogle Scholar
  17. Collins CJ, Fraser CI, Ashcroft A, Waters JM (2010) Asymmetric dispersal of southern bull-kelp (Durvillaea antarctica) adults in coastal New Zealand: testing an oceanographic hypothesis. Mol Ecol 19:4572–4580. doi: 10.1111/j.1365-294X.2010.04842.x PubMedCrossRefGoogle Scholar
  18. Cowen RK, Lwiza KMM, Sponaugle S, Paris CB, Olson DB (2000) Connectivity of marine populations: open or closed? Science 287:857–859. doi: 10.1126/science.287.5454.857 PubMedCrossRefGoogle Scholar
  19. Dix TG (1970) Biology of Evechinus chloroticus (Echinoidea:Echinometridae) from different localities. N Z J Mar Freshwat Res 4:385–405CrossRefGoogle Scholar
  20. Doherty PJ, Planes S, Mather P (1995) Gene flow and larval duration in 7 species of fish from the Great Barrier Reef. Ecology 76:2373–2391CrossRefGoogle Scholar
  21. Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2010) Geneious v5.0. Available from
  22. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x PubMedCrossRefGoogle Scholar
  23. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x CrossRefGoogle Scholar
  24. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes—application to human mitochondrial-DNA restriction data. Genetics 131:479–491PubMedCentralPubMedGoogle Scholar
  25. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedCentralPubMedGoogle Scholar
  26. Fisher RA (1935) The logic of inductive inference. J Royal Stat Soc 98:39–82CrossRefGoogle Scholar
  27. Fraser CI, Winter DJ, Spencer HG, Waters JM (2010) Multigene phylogeny of the southern bull-kelp genus Durvillaea (Phaeophyceae: Fucales). Mol Phylogen Evol 57:1301–1311. doi: 10.1016/j.ympev.2010.10.011 CrossRefGoogle Scholar
  28. Goldstien SJ, Schiel DR, Gemmell NJ (2006) Comparative phylogeography of coastal limpets across a marine disjunction in New Zealand. Mol Ecol 15:3259–3268. doi: 10.1111/j.1365-294X.2006.02977.x PubMedCrossRefGoogle Scholar
  29. Hedgecock D, Pudovkin AI (2011) Sweepstakes reproductive success in highly fecund marine fish and shellfish: a review and commentary. Bull Mar Sci 87:971–1002. doi: 10.5343/bms.2010.1051 CrossRefGoogle Scholar
  30. Hedgecock D, Barber PH, Edmands S (2007) Genetic approaches to measuring connectivity. Oceanography 20:70–79CrossRefGoogle Scholar
  31. Hedrick PW (1999) Perspective: Highly variable loci and their interpretation in evolution and conservation. Evolution 53:313–318. doi: 10.2307/2640768 CrossRefGoogle Scholar
  32. Hellberg ME (1996) Dependence of gene flow on geographic distance in two solitary corals with different larval dispersal capabilities. Evolution 50:1167–1175. doi: 10.2307/2410657 CrossRefGoogle Scholar
  33. Hickey AJR, Lavery SD, Hannan DA, Baker CS, Clements KD (2009) New Zealand triplefin fishes (family Tripterygiidae): contrasting population structure and mtDNA diversity within a marine species flock. Mol Ecol 18:680–696. doi: 10.1111/j.1365-294X.2008.04052.x PubMedCrossRefGoogle Scholar
  34. Hinnendael F (2008) Hemigrapsus crenulatus and H. sexdentatus. MSc. Leigh Marine Laboratory, AucklandGoogle Scholar
  35. Hoelzel A, Green A (1998) PCR protocols and population analysis by direct DNA sequencing and PCR-based DNA fingerprinting. In: Hoelzel AR (ed) Molecular genetic analysis of populations: a practical approach. Oxford University Press, Oxford, pp 201–233Google Scholar
  36. Holleley CE, Geerts PG (2009) Multiplex manager 1.0: a cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46:511. doi: 10.2144/000113156 PubMedCrossRefGoogle Scholar
  37. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet. doi: 10.1186/1471-2156-6-13 PubMedCentralPubMedGoogle Scholar
  38. Johnson MS, Black R (1982) Chaotic genetic patchiness in an inter-tidal limpet, Siphonaria sp. Mar Biol 70:157–164CrossRefGoogle Scholar
  39. Johnson MS, Black R (1984) Pattern beneath the chaos—the effect of recruitment on genetic patchiness in an intertidal limpet. Evolution 38:1371–1383CrossRefGoogle Scholar
  40. Jones GP, Srinivasan M, Almany GR (2007) Population connectivity and conservation of marine biodiversity. Oceanography 20:100–111CrossRefGoogle Scholar
  41. Jones TC, Gemmill CEC, Pilditch CA (2008) Genetic variability of New Zealand seagrass (Zostera muelleri) assessed at multiple spatial scales. Aquat Bot 88:39–46. doi: 10.1016/j.aquabot.2007.08.017 CrossRefGoogle Scholar
  42. Kimura M (1980) A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. Mol Evol 16:111–120CrossRefGoogle Scholar
  43. Kinlan BP, Gaines SD, Lester SE (2005) Propagule dispersal and the scales of marine community process. Divers Distrib 11:139–148. doi: 10.1111/j.1366-9516.2005.00158.x CrossRefGoogle Scholar
  44. Lamare MD, Stewart BG (1998) Mass spawning by the sea urchin Evechinus chloroticus (Echinodermata: Echinoidea) in a New Zealand fiord. Mar Biol 132:135–140CrossRefGoogle Scholar
  45. Leis JM, Carson-Ewart BM (2001) Behaviour of pelagic larvae of four coral-reef fish species in the ocean and an atoll lagoon. Coral Reefs 19:247–257Google Scholar
  46. Levin LA (2006) Recent progress in understanding larval dispersal: new directions and digressions. Integr Comp Biol 46:282–297. doi: 10.1093/icb/024 PubMedCrossRefGoogle Scholar
  47. Lewis PO, Zaykin D (2002) Genetic data analysis: computer program for the analysis of allelic data. Version 1.1. Free program distributed by the authors over the internet from
  48. Meirmans PG (2006) Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evol 60:2399–2402CrossRefGoogle Scholar
  49. Meirmans PG, Hedrick PW (2011) Assessing population structure: F(ST) and related measures. Mol Ecol Resour 11:5–18PubMedCrossRefGoogle Scholar
  50. Mercier A, Sewell MA, Hamel JF (2013) Pelagic propagule duration and developmental mode: reassessment of a fading link. Global Ecol Biogeogr 22:517–530. doi: 10.1111/geb.12018
  51. Mladenov PV, Allibone RM, Wallis GP (1997) Genetic differentiation in the New Zealand sea urchin Evechinus chloroticus (Echinodermata: Echinoidea). N Z J Mar Freshwat Res 31:261–269CrossRefGoogle Scholar
  52. Muths D, Jollivet D, Gentil F, Davoult D (2009) Large-scale genetic patchiness among NE Atlantic populations of the brittle star Ophiothrix fragilis. Aquat Biol 5:117–132. doi: 10.3354/ab00138 CrossRefGoogle Scholar
  53. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedCentralPubMedGoogle Scholar
  54. Olivares-Banuelos NC, Enriquez-Paredes LM, Ladah LB, De La Rosa-Velez J (2008) Population structure of purple sea urchin Strongylocentrotus purpuratus along the Baja California peninsula. Fish Sci 74:804–812. doi: 10.1111/j.1444-2906.2008.01592.x CrossRefGoogle Scholar
  55. Palumbi SR, Grabowsky G, Duda T, Geyer L, Tachino N (1997) Speciation and population genetic structure in tropical Pacific Sea urchins. Evolution 51:1506–1517. doi: 10.2307/2411203 CrossRefGoogle Scholar
  56. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x
  57. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539 doi: 10.1093/bioinformatics/bts460
  58. Penant G, Aurelle D, Feral JP, Chenuil A (2013) Planktonic larvae do not ensure gene flow in the edible sea urchin Paracentrotus lividus. Mar Ecol Prog Ser 480:155. doi: 10.3354/meps10194 CrossRefGoogle Scholar
  59. Perrin C (2002) The effects of fiord hydography and environment on the population genetic structures of the sea urchin Evechinus chloroticus and the sea star Coscinasterias muricata in New Zealand. Marine Science and Zoology, DunedinGoogle Scholar
  60. Perrin C, Roy MS (2000) Rapid and efficient identification of microsatellite loci from the sea urchin, Evechinus chloroticus. Mol Ecol 9:2221–2223PubMedCrossRefGoogle Scholar
  61. Phillips NE, Shima JS (2006) Differential effects of suspended sediments on larval survival and settlement of New Zealand urchins Evechinus chloroticus and abalone Haliotis iris. Mar Ecol Prog Ser 314:149–158. doi: 10.3354/meps314149
  62. Piggott MP, Banks SC, Tung P, Beheregaray LB (2008) Genetic evidence for different scales of connectivity in a marine mollusc. Mar Ecol Prog Ser 365:127–136. doi: 10.3354/meps07478 CrossRefGoogle Scholar
  63. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  64. Rasmussen LL, Cornuelle BD, Levin LA, Largier JL, Di Lorenzo E (2009) Effects of small-scale features and local wind forcing on tracer dispersion and estimates of population connectivity in a regional scale circulation model. J Geophys Res Oceans. doi: 10.1029/2008jc004777 Google Scholar
  65. Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283CrossRefGoogle Scholar
  66. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225. doi: 10.2307/2409177 CrossRefGoogle Scholar
  67. Ross PM, Hogg ID, Pilditch CA, Lundquist CJ (2009) Phylogeography of New Zealand’s coastal benthos. N Z J Mar Freshwat Res 43:1009–1027CrossRefGoogle Scholar
  68. Ross PM, Hogg ID, Pilditch CA, Lundquist CJ, Wilkins RJ (2012) Population genetic structure of the New Zealand Estuarine Clam Austrovenus stutchburyi (Bivalvia: Veneridae) reveals population subdivision and partial congruence with biogeographic boundaries. Estuaries Coasts 35:143–154. doi: 10.1007/s12237-011-9429-z CrossRefGoogle Scholar
  69. Sanford E, Kelly MW (2011) Local adaptation in marine invertebrates. In: Carlson CA, Giovannoni SJ (eds) Annual review of marine science, 3rd edn., pp 509–535. doi: 10.1146/annurev-marine-120709-142756 Google Scholar
  70. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234. doi: 10.1038/72708 PubMedCrossRefGoogle Scholar
  71. Shanks AL (2009) Pelagic larval duration and dispersal distance revisited. Biol Bull 216:373–385PubMedGoogle Scholar
  72. Shanks AL, Grantham BA, Carr MH (2003) Propagule dispersal distance and the size and spacing of marine reserves. Ecol Appl 13:S159–S169CrossRefGoogle Scholar
  73. Shears NT, Smith F, Babcock RC, Duffy CAJ, Villouta E (2008) Evaluation of biogeographic classification schemes for conservation planning: application to New Zealand’s coastal marine environment. Conserv Biol 22:467–481. doi: 10.1111/j.1523-1739.2008.00882.x PubMedCrossRefGoogle Scholar
  74. Sherwin WB, Jabot F, Rush R, Rossetto M (2006) Measurement of biological information with applications from genes to landscapes. Mol Ecol 15:2857–2869PubMedCrossRefGoogle Scholar
  75. Smith F (2004) Marine environment classification: physical influences on rocky reef assemblages in the Hauraki Gulf. Department of ConservationGoogle Scholar
  76. Stevens MI, Hogg ID (2004) Population genetic structure of New Zealand’s endemic corophiid amphipods: evidence for allopatric speciation. Biol J Linn Soc 81:119–133. doi: 10.1111/j.1095-8312.2004.00270.x CrossRefGoogle Scholar
  77. Treml EA, Halpin PN, Urban DL, Pratson LF (2008) Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landscape Ecol 23:19–36. doi: 10.1007/s10980-007-9138-y CrossRefGoogle Scholar
  78. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  79. Veale AJ, Lavery SD (2011) Phylogeography of the snakeskin chiton Sypharochiton pelliserpentis (Mollusca: Polyplacophora) around New Zealand: are seasonal near-shore upwelling events a dynamic barrier to gene flow? Biol J Linn Soc 104:552–563. doi: 10.1111/j.1095-8312.2011.01743.x CrossRefGoogle Scholar
  80. Veale AJ, Lavery SD (2012) The population genetic structure of the waratah anemone (Actinia tenebrosa) around New Zealand. N Z J Mar Freshwat Res 46:523–536. doi: 10.1080/00288330.2012.730053 CrossRefGoogle Scholar
  81. Ward RD, Holmes BH, O'Hara TD (2008) DNA barcoding discriminates echinoderm species. Mol Ecol Res 8:1202–1211. doi: 10.1111/j.1755-0998.2008.02332.x
  82. Walker JW (2007) Effects of fine sediments on settlement and survival of the sea urchin Evechinus chloroticus in northeastern New Zealand. Mar Ecol Prog Ser 331:109–118. doi: 10.3354/meps331109
  83. Waters JM, Roy MS (2004) Phylogeography of a high-dispersal New Zealand sea-star: does upwelling block gene-flow? Mol Ecol 13:2797–2806. doi: 10.1111/j.1365-294X.2004.02282.x PubMedCrossRefGoogle Scholar
  84. Weersing K, Toonen RJ (2009) Population genetics, larval dispersal, and connectivity in marine systems. Marine Ecol Prog Ser 393:1–12. doi: 10.3354/meps08287 CrossRefGoogle Scholar
  85. Wei KJ, Wood AR, Gardner JPA (2013a) Population genetic variation in the New Zealand greenshell mussel: locus-dependent conflicting signals of weak structure and high gene flow balanced against pronounced structure and high self-recruitment. Mar Biol 160:931–949. doi: 10.1007/s00227-012-2145-9 CrossRefGoogle Scholar
  86. Wei KJ, Wood AR, Gardner JPA (2013b) Seascape genetics of the New Zealand greenshell mussel: sea surface temperature explains macrogeographic scale genetic variation. Mar Ecol Prog Ser 477:107–121. doi: 10.3354/meps10158 CrossRefGoogle Scholar
  87. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population-structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  88. White C, Selkoe KA, Watson J, Siegel DA, Zacherl DC, Toonen RJ (2010) Ocean currents help explain population genetic structure. Proc Royal Soc B-Biol Sci 277:1685–1694. doi: 10.1098/rspb.2009.2214 CrossRefGoogle Scholar
  89. Will M, Hale ML, Schiel DR, Gemmell NJ (2011) Low to moderate levels of genetic differentiation detected across the distribution of the New Zealand abalone, Haliotis iris. Mar Biol 158:1417–1429. doi: 10.1007/s00227-011-1659-x CrossRefGoogle Scholar
  90. Wright S (1951) The Genetical structure of populations. Annals of Eugenics 15:323–354PubMedCrossRefGoogle Scholar
  91. Wright S (1965) The interpretation of population-structure by F-statics with special regard to systems of mating. Evolution 19:395–420CrossRefGoogle Scholar
  92. Yearsley JM, Viard F, Broquet T (2013) The effect of collective dispersal on the genetic structure of a subdivided population. Evolution 67:1649–1659. doi: 10.1111/evo.12111 PubMedCrossRefGoogle Scholar
  93. Zulliger DE, Tanner S, Ruch M, Ribi G (2009) Genetic structure of the high dispersal Atlanto-Mediterreanean sea star Astropecten aranciacus revealed by mitochondrial DNA sequences and microsatellite loci. Mar Biol 156:597–610. doi: 10.1007/s00227-008-1111-z

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Meredith M. Nagel
    • 1
  • Mary A. Sewell
    • 1
  • Shane D. Lavery
    • 1
    • 2
  1. 1.School of Biological SciencesUniversity of AucklandAucklandNew Zealand
  2. 2.Institute of Marine ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations