Conservation Genetics

, Volume 16, Issue 2, pp 459–476 | Cite as

Limited gene flow and high genetic diversity in the threatened Betic midwife toad (Alytes dickhilleni): evolutionary and conservation implications

  • Guilherme Dias
  • Juan Francisco Beltrán
  • Miguel Tejedo
  • Maribel Benítez
  • Emilio González Miras
  • Nuno Ferrand
  • Helena Gonçalves
Research Article


Habitat fragmentation may involve a loss of genetic diversity and increments the vulnerability to species persistence. It could be a particular issue when coupled with other negative factors as the predicted climatic changes and the emergence of infectious diseases. In Southern Iberian Peninsula several endemic amphibian species have confined and fragmented distributions, including the Betic midwife toad Alytes dickhilleni. Herein, we present the first range-wide assessment of genetic diversity and structure in this species, using mitochondrial and microsatellite data. A mitochondrial fragment of the ND4 gene was amplified for 65 individuals and a set of 20 microsatellite loci, specifically developed for this species, was genotyped for 490 individuals from several sampling sites distributed across the species entire range. While both markers revealed high genetic diversity, only for microsatellites a marked genetic substructure was apparent. Our results evidence low levels of gene flow, suggesting the persistence of the species in fragmented habitats for several generations and a very limited connectivity between most of mountain ranges. The high diversity within A. dickhilleni populations could help to respond to the emergence of new diseases and to the predicted effects of climatic changes in Southeastern Iberian Peninsula. We hypothesize that the lack of gene flow is due to the absence of available breeding habitats and recommend that future management efforts of A. dickhilleni include the creation and maintenance of aquatic breeding habitats in a way that most of genetic diversity is preserved.


Genetic characterization STRs MtDNA Amphibians Iberian Peninsula Alytes dickhilleni 



For the help during sample collection we thank David Garcia and Alberto Escolano. For technical support during lab work we thank Susana Lopes and Bruno Carvalho. We thank to Fernando Sequeira and Iñigo Martínez-Solano for their valuable comments on the earlier version of this manuscript. This work was supported through Project “Genomics and Evolutionary Biology” cofinanced by North Portugal Regional Operational Programme 2007/2013 (ON.2—O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF); the Program Operacional Factores de Competitividade (COMPETE), and by national funds from Fundação para a Ciência e a Tecnologia (FCT), through the research Project PTDC/BIA-BEC/099915/2008 to HG, and CGL 2008-04814-C02/BOS from Spanish Ministerio de Ciencia y Innovación to JFB. Partial funding for field work was provided by Ministerio de Ciencia e Innovación, Spain, project TATANKA CGL2011-25062 (P.I. R Márquez). GD and HG are supported by a PhD grant (SFRH/BD89750/2012) and a postdoctoral Grant (SFRH/BPD/26555/2006), respectively, from FCT.

Supplementary material

10592_2014_672_MOESM1_ESM.doc (159 kb)
Supplementary material 1 (DOC 159 kb)


  1. Albert EM, Arroyo JM, Godoy JA (2010) Isolation and characterization of microsatellite loci for the endangered Midwife Betic toad Alytes dickhilleni (Discoglossidae). Cons Genet Resour 3:251–253CrossRefGoogle Scholar
  2. Alexandrino J, Froufe E, Arntzen JW, Ferrand N (2000) Genetic subdivision, glacial refugia and postglacial recolonization in the golden-striped salamander, Chioglossa lusitanica (Amphibia: Urodela). Mol Ecol 9:771–781CrossRefPubMedGoogle Scholar
  3. Andersen LW, Fog K, Damgaard C (2004) Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea). Proc R Soc Lond B 271:1293–1302CrossRefGoogle Scholar
  4. Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728CrossRefGoogle Scholar
  5. Arévalo E, Davis SK, Sites JW Jr (1994) Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Syst Biol 43:387–418CrossRefGoogle Scholar
  6. Arntzen JW, García-París M (1995) Morphological and allozyme studies of midwife toads (genus Alytes) including the description of two new taxa from Spain. Contrib Zool 65:5–34Google Scholar
  7. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  8. Barrett RDH, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23:38–44CrossRefPubMedGoogle Scholar
  9. Beebee TJC (2005) Conservation genetics of amphibians. Heredity 95:423–427CrossRefPubMedGoogle Scholar
  10. Beebee TJC, Griffiths RA (2005) The amphibian decline crisis: a watershed for conservation biology? Biol Conserv 125:271–285CrossRefGoogle Scholar
  11. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) genetix 4.05, Population genetics software for Windows TM. Université de Montpellier II. MontpellierGoogle Scholar
  12. Bosch J, González-Miras E (2012) Seguimiento de Alytes dickhilleni: informe final. Monografías SARE. Asociación Herpetológica Española, Ministerio de Agricultura, Alimentación y Medio Ambiente. MadridGoogle Scholar
  13. Bosch J, García-Alonso D, Fernández-Beaskoetxea S, Fisher MC, Garner TWJ (2013) Evidence for the introduction of lethal chytridiomycosis affecting wild betic midwife toads (Alytes dickhilleni). EcoHealth 10:82–89CrossRefPubMedGoogle Scholar
  14. Burns EL, Crayn DM (2006) Phylogenetics and evolution of bell frogs (Litoria aurea species-group, Anura: Hylidae) based on mitochondrial ND4 sequences. Mol Phylogenet Evol 39:573–579CrossRefPubMedGoogle Scholar
  15. Canestrelli D, Verardi A, Nascetti G (2007) Genetic differentiation and history of populations of the Italian treefrog Hyla intermedia: lack of concordance between mitochondrial and nuclear markers. Genetica 130:241–255CrossRefPubMedGoogle Scholar
  16. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257PubMedCentralPubMedGoogle Scholar
  17. Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CrossRefPubMedGoogle Scholar
  18. Chen C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026CrossRefPubMedGoogle Scholar
  19. Chiucchi JE, Gibbs HL (2010) Similarity of contemporary and historical gene flow among highly fragmented populations of an endangered rattlesnake. Mol Ecol 19:5345–5358CrossRefPubMedGoogle Scholar
  20. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedCentralPubMedGoogle Scholar
  21. Crawford AJ (2003) Relative rates of nucleotide substitution in frogs. J Mol Evol 57:636–641CrossRefPubMedGoogle Scholar
  22. Crawford NG (2010) smogd: software for the measurement of genetic diversity. Mol Ecol Resour 10:556–557CrossRefPubMedGoogle Scholar
  23. Dieringer D, Schlštterer C (2003) microsatellite analiser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169CrossRefGoogle Scholar
  24. Drummond AJ, Rambaut A (2007) beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214–221CrossRefPubMedCentralPubMedGoogle Scholar
  25. Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22:1185–1192CrossRefPubMedGoogle Scholar
  26. Earl DA, von Holddt BM (2011) structure harvester: a website and program for visualizing Structure output and implement the Evanno method. Cons Genet Resour 4:359–361CrossRefGoogle Scholar
  27. Emaresi G, Pellet J, Dubey S, Hirzel AH, Fumagalli L (2011) Landscape genetics of the Alpine newt (Mesotriton alpestris) inferred from a strip-based approach. Conserv Genet 12:41–50CrossRefGoogle Scholar
  28. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  29. Evans SR, Sheldon BC (2008) Interspecific patterns of genetic diversity in birds: correlations with extinction risk. Conserv Biol 22:1016–1025CrossRefPubMedGoogle Scholar
  30. Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142CrossRefPubMedGoogle Scholar
  31. Felsenstein J (2010) phylip (Phylogeny Inference Package) version 3.69, University of Washington, SeattleGoogle Scholar
  32. Frankham R, Ballou JD, Briscoe DA (2009) Introduction to conservation genetics, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  33. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedCentralPubMedGoogle Scholar
  34. Funk WC, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S, Allendorf F (2005a) Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol 14:483–496CrossRefPubMedGoogle Scholar
  35. Funk WC, Greene AE, Corn PS, Allendorf FW (2005b) High dispersal in a frog species suggests that it is vulnerable to habitat fragmentation. Biol Lett 1:13–16CrossRefPubMedCentralPubMedGoogle Scholar
  36. Gao X, Giorgi F (2008) Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Global Planet Change 62:195–209CrossRefGoogle Scholar
  37. García-París M (2000) Alytes (Alytes) dickhilleni. In: Ramos MA et al (eds) Fauna Ibérica, vol 24., Museo Nacional de Ciencias NaturalesCSIC, Madrid, pp 288–293Google Scholar
  38. García-París M, Arntzen JW (2002) Alytes dickhilleni (Arntzen and García-París 1995). In: Pleguezuelos JM, Márquez R, Lizana M (eds) Atlas y Libro Rojo de los Anfibios y Reptiles de España, Dirección General de Conservación de la Naturaleza, Asociación Herpetológica Española, Madrid, pp 76–78Google Scholar
  39. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318CrossRefPubMedGoogle Scholar
  40. Giordano AR, Ridenhour BJ, Storfer A (2007) The influence of altitude and topography on genetic structure in the long-toed salamander (Ambystoma macrodactulym). Mol Ecol 16:1625–1637CrossRefPubMedGoogle Scholar
  41. Gonçalves H, Martínez-Solano I, Ferrand N, García-París M (2007) Conflicting phylogenetic signal of nuclear vs mitochondrial DNA markers in midwife toads (Anura, Discoglossidae, Alytes): deep coalescence or ancestral hybridization? Mol Phylogenet Evol 44:494–500Google Scholar
  42. Gonçalves H, Martínez-Solano I, Pereira R, Carvalho B, García-París M, Ferrand N (2009) High levels of population subdivision in a morphologically conserved mediterranean toad (Alytes cisternasii) result from recent, multiple refugia: evidence from mtDNA, microsatellites and nuclear genealogies. Mol Ecol 18:5143–5160CrossRefPubMedGoogle Scholar
  43. Goudet J (2002) fstat, a program to estimate and test gene diversities and fixation indices (version Available from
  44. Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  45. Hof C, Araújo MB, Jetz W, Rahbek C (2011) Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480:516–519PubMedGoogle Scholar
  46. Holleley CE, Geerts PG (2009) Multiplex manager 1.0: a crossplatform computer program that plans and optimizes multiplex PCR. Biotechniques 46:511–517CrossRefPubMedGoogle Scholar
  47. IPCC (2014) Summary for policymakers. In: Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change (eds Field CB et al) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1–32.Google Scholar
  48. Jakobsson M, Rosenberg NA (2007) clumpp: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefPubMedGoogle Scholar
  49. Johansson M, Primmer CR, Sahlsten J, Merilä J (2005) The influence of landscape structure on occurrence, abundance and genetic diversity of the common frog, Rana temporaria. Glob Change Biol 11:1664–1679CrossRefGoogle Scholar
  50. Johansson M, Primmer CR, Merilä J (2006) History vs. current demography: explaining the genetic population structure of the common frog (Rana temporaria). Mol Ecol 15:975–983CrossRefPubMedGoogle Scholar
  51. Jost L (2008) Gst and its relatives do not measure differentiation. Mol Ecol 17:4015–4026CrossRefPubMedGoogle Scholar
  52. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241CrossRefGoogle Scholar
  53. Kraaijeveld-Smit FJL, Beebee TJC, Griffiths RA, Moore RD, Schley L (2005) Low gene flow but high genetic diversity in the threatened Mallorcan midwife toad Alytes muletensis. Mol Ecol 14:3303–3315CrossRefGoogle Scholar
  54. Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–655CrossRefGoogle Scholar
  55. Kuntner M, Năpăruş M, Li D, Coddington JA (2014) Phylogeny predicts future habitat shifts due to climate change. PLoS ONE 9(6):e98907. doi: 10.1371/journal.pone.0098907 CrossRefPubMedCentralPubMedGoogle Scholar
  56. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  57. Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237CrossRefGoogle Scholar
  58. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247CrossRefPubMedGoogle Scholar
  59. MAGRAMA (2012) Inventario Español de Especies Terrestres. Inventario Español del Patrimonio Natural y de la Biodiversidad. Ministerio de Agricultura, Alimentación y Medio Ambiente.
  60. Maia-Carvalho B, Gonçalves H, Ferrand N, Martínez-Solano I (2014a) Multilocus assessment of phylogenetic relationships in Alytes (Anura, Alytidae). Mol Phylogenet Evol DOI:  10.1016/j.ympev.2014.05.033
  61. Maia-Carvalho B, Gonçalves H, Martínez-Solano I, Gutiérrez-Rodríguez J, Lopes S, Ferrand N, Sequeira F (2014b) Intraspecific genetic variation in the common midwife toad (Alytes obstetricans): subspecies assignment using mitochondrial and microsatellite markers. J Zool Syst Evol Res 52:170–175CrossRefGoogle Scholar
  62. Manel S, Holderegger R (2013) Ten years of landscape genetics. Trends Ecol Evol 28:614–621CrossRefPubMedGoogle Scholar
  63. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  64. Martínez-Solano I, González EG (2008) Patterns of gene flow and source-sink dynamics in high altitude populations of the common toad Bufo bufo (Anura: Bufonidae). Biol J Linn Soc 95:824–839CrossRefGoogle Scholar
  65. Martínez-Solano I, París M, Izquierdo E, García-París M (2003) Larval growth plasticity in wild populations of the betic midwife toad, Alytes dickhilleni (Anura: Discogloddidae). Herpetol J 13:89–94Google Scholar
  66. Martínez-Solano I, Rey I, García-París M (2005) The impact of historical and recent factors on genetic variability in a mountain frog: the case of Rana iberica (Anura: Ranidae). Anim Conserv 8:431–441CrossRefGoogle Scholar
  67. Milá B, Carranza S, Guillaume O, Clobert J (2010) Marked genetic structuring and extreme dispersal limitation in Pyrenean brook newt Calotriton asper (Amphibia: Salamandridae) revealed by genome- wide AFLP but not mtDNA. Mol Ecol 19:108–120CrossRefPubMedGoogle Scholar
  68. Miller M (2005) Alleles In Space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J Hered 96:722–724CrossRefPubMedGoogle Scholar
  69. Molecular Ecology Resources Primer Development Consortium et al (2011) Permanent genetic resources added to molecular ecology resources database december 2010–2031 January 2011: isolation and characterization of 13 highly polymorphic microsatellite loci in the Betic midwife toad Alytes dickhilleni. Mol Ecol Resour 11:586–589CrossRefGoogle Scholar
  70. Monsen KJ, Blouin M (2003) Genetic structure in a montane ranid frog: restricted gene flow and nuclear–mitochondrial discordance. Mol Ecol 12:3275–3286CrossRefPubMedGoogle Scholar
  71. Noël S, Ouellet M, Galois P, Lapointe F-L (2007) Impact of urban fragmentation on the genetic structure of the eastern red-backed salamander. Conserv Genet 8:599–606CrossRefGoogle Scholar
  72. Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol Conserv 117:285–297CrossRefGoogle Scholar
  73. Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790CrossRefPubMedGoogle Scholar
  74. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefPubMedGoogle Scholar
  75. Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Bëer E, Robinson S, Vásquez-Carrillo C, Pauli JN, Palsbøll PJ (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21: 3403–3418Google Scholar
  76. Piry S, Luikart G, Cornuet JM (1999) bottleneck: a computer program for detecting recent reduction in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  77. Posada D (2008) jmodeltest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefPubMedGoogle Scholar
  78. Pounds JA, Bustamente MR, Coloma LA, Consuegra JA, Fogden MPL et al (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167CrossRefPubMedGoogle Scholar
  79. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  80. Purrenhage JL, Niewiarowski PH, Moore FB-G (2009) Population structure of spotted salamanders (Ambystoma maculatum) in a fragmented landscape. Mol Ecol 18:235–247CrossRefPubMedGoogle Scholar
  81. Rambaut A, Drummond AJ (2009) tracer version 1.5, Available from, Accessed at May 2012
  82. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100CrossRefPubMedGoogle Scholar
  83. Raymond M, Rousset F (1995) genepop (Version 1.2): a population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  84. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  85. Rödder D, Kielgast J, Bielby J, Schmidtlein S, Bosch J, Garner TJW, Veith M, Walker S, Fisher MC, Lötters S (2009) Global amphibian extinction risk assessment for the panzootic chytrid fungus. Diversity 1: 52–66Google Scholar
  86. Rodríguez-Puebla C, Encinas AH, García-Casado LA, Nieto S (2010) Trends in warm days and cold nights over the Iberian Peninsula: relationships to large-scale variables. Clim Change 100:667–684CrossRefGoogle Scholar
  87. Román A (2002) Alytes muletensis (Sanchiz y Adrover, 1979). Atlas y Libro Rojo de los Anfibios y Reptiles de España (eds Pleguezuelos JM, Márquez R, Lizana M), Dirección General de Conservación de la Naturaleza, Asociación Herpetológica Española, Madrid, pp. 79–81Google Scholar
  88. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792CrossRefPubMedGoogle Scholar
  89. Smith AL, Gardner MG, Fenner AL, Bull CM (2009) Restricted gene flow in the endangered pygmy bluetongue lizard (Tiliqua adelaidensis) in a fragmented agricultural landscape. Wildl Res 36:466–478CrossRefGoogle Scholar
  90. Spear SF, Peterson CR, Matocq MD, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564CrossRefPubMedGoogle Scholar
  91. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1785CrossRefPubMedGoogle Scholar
  92. Tajima F (1989) Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedCentralPubMedGoogle Scholar
  93. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  94. Thomas CD, Franco AMA, Hill JK (2006) Range retractions and extinction in the face of climate warming. Trends Ecol Evol 21:415–416CrossRefPubMedGoogle Scholar
  95. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  96. Wasserman TN, Cushman SA, Littell JS, Shirk AJ, Landguth EL (2013) Population connectivity and genetic diversity of American marten (Martes americana) in the United States northern Rocky Mountains in a climate change context. Conserv Genet 14:529–541CrossRefGoogle Scholar
  97. Weir BS (1996) Genetic data analysis II. Sinauer Associates, Sunderland, MassGoogle Scholar
  98. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of populations structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  99. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Guilherme Dias
    • 1
    • 2
  • Juan Francisco Beltrán
    • 3
  • Miguel Tejedo
    • 4
  • Maribel Benítez
    • 5
  • Emilio González Miras
    • 6
  • Nuno Ferrand
    • 1
    • 2
  • Helena Gonçalves
    • 1
  1. 1.CIBIO/UP, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do Porto, InBIOVairãoPortugal
  2. 2.Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  3. 3.Departamento de Fisiología y ZoologíaUniversidad de SevillaSevilleSpain
  4. 4.Department of Evolutionary EcologyEstación Biológica de Doñana, CSICSevilleSpain
  5. 5.Departamento de Zoología, Facultad de CienciasUniversidad de GranadaGranadaSpain
  6. 6.Agencia de Medio Ambiente y del Agua, Consejería de Agricultura, Pesca y Medio AmbienteJunta de AndalucíaSevilleSpain

Personalised recommendations