Skip to main content

Advertisement

Log in

Limited gene flow and high genetic diversity in the threatened Betic midwife toad (Alytes dickhilleni): evolutionary and conservation implications

Conservation Genetics Aims and scope Submit manuscript

Abstract

Habitat fragmentation may involve a loss of genetic diversity and increments the vulnerability to species persistence. It could be a particular issue when coupled with other negative factors as the predicted climatic changes and the emergence of infectious diseases. In Southern Iberian Peninsula several endemic amphibian species have confined and fragmented distributions, including the Betic midwife toad Alytes dickhilleni. Herein, we present the first range-wide assessment of genetic diversity and structure in this species, using mitochondrial and microsatellite data. A mitochondrial fragment of the ND4 gene was amplified for 65 individuals and a set of 20 microsatellite loci, specifically developed for this species, was genotyped for 490 individuals from several sampling sites distributed across the species entire range. While both markers revealed high genetic diversity, only for microsatellites a marked genetic substructure was apparent. Our results evidence low levels of gene flow, suggesting the persistence of the species in fragmented habitats for several generations and a very limited connectivity between most of mountain ranges. The high diversity within A. dickhilleni populations could help to respond to the emergence of new diseases and to the predicted effects of climatic changes in Southeastern Iberian Peninsula. We hypothesize that the lack of gene flow is due to the absence of available breeding habitats and recommend that future management efforts of A. dickhilleni include the creation and maintenance of aquatic breeding habitats in a way that most of genetic diversity is preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albert EM, Arroyo JM, Godoy JA (2010) Isolation and characterization of microsatellite loci for the endangered Midwife Betic toad Alytes dickhilleni (Discoglossidae). Cons Genet Resour 3:251–253

    Article  Google Scholar 

  • Alexandrino J, Froufe E, Arntzen JW, Ferrand N (2000) Genetic subdivision, glacial refugia and postglacial recolonization in the golden-striped salamander, Chioglossa lusitanica (Amphibia: Urodela). Mol Ecol 9:771–781

    Article  CAS  PubMed  Google Scholar 

  • Andersen LW, Fog K, Damgaard C (2004) Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea). Proc R Soc Lond B 271:1293–1302

    Article  Google Scholar 

  • Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728

    Article  Google Scholar 

  • Arévalo E, Davis SK, Sites JW Jr (1994) Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Syst Biol 43:387–418

    Article  Google Scholar 

  • Arntzen JW, García-París M (1995) Morphological and allozyme studies of midwife toads (genus Alytes) including the description of two new taxa from Spain. Contrib Zool 65:5–34

    Google Scholar 

  • Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Barrett RDH, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23:38–44

    Article  PubMed  Google Scholar 

  • Beebee TJC (2005) Conservation genetics of amphibians. Heredity 95:423–427

    Article  CAS  PubMed  Google Scholar 

  • Beebee TJC, Griffiths RA (2005) The amphibian decline crisis: a watershed for conservation biology? Biol Conserv 125:271–285

    Article  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) genetix 4.05, Population genetics software for Windows TM. Université de Montpellier II. Montpellier

  • Bosch J, González-Miras E (2012) Seguimiento de Alytes dickhilleni: informe final. Monografías SARE. Asociación Herpetológica Española, Ministerio de Agricultura, Alimentación y Medio Ambiente. Madrid

  • Bosch J, García-Alonso D, Fernández-Beaskoetxea S, Fisher MC, Garner TWJ (2013) Evidence for the introduction of lethal chytridiomycosis affecting wild betic midwife toads (Alytes dickhilleni). EcoHealth 10:82–89

    Article  PubMed  Google Scholar 

  • Burns EL, Crayn DM (2006) Phylogenetics and evolution of bell frogs (Litoria aurea species-group, Anura: Hylidae) based on mitochondrial ND4 sequences. Mol Phylogenet Evol 39:573–579

    Article  CAS  PubMed  Google Scholar 

  • Canestrelli D, Verardi A, Nascetti G (2007) Genetic differentiation and history of populations of the Italian treefrog Hyla intermedia: lack of concordance between mitochondrial and nuclear markers. Genetica 130:241–255

    Article  PubMed  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Chiucchi JE, Gibbs HL (2010) Similarity of contemporary and historical gene flow among highly fragmented populations of an endangered rattlesnake. Mol Ecol 19:5345–5358

    Article  PubMed  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crawford AJ (2003) Relative rates of nucleotide substitution in frogs. J Mol Evol 57:636–641

    Article  CAS  PubMed  Google Scholar 

  • Crawford NG (2010) smogd: software for the measurement of genetic diversity. Mol Ecol Resour 10:556–557

    Article  PubMed  Google Scholar 

  • Dieringer D, Schlštterer C (2003) microsatellite analiser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  CAS  Google Scholar 

  • Drummond AJ, Rambaut A (2007) beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214–221

    Article  PubMed Central  PubMed  Google Scholar 

  • Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22:1185–1192

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, von Holddt BM (2011) structure harvester: a website and program for visualizing Structure output and implement the Evanno method. Cons Genet Resour 4:359–361

    Article  Google Scholar 

  • Emaresi G, Pellet J, Dubey S, Hirzel AH, Fumagalli L (2011) Landscape genetics of the Alpine newt (Mesotriton alpestris) inferred from a strip-based approach. Conserv Genet 12:41–50

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Evans SR, Sheldon BC (2008) Interspecific patterns of genetic diversity in birds: correlations with extinction risk. Conserv Biol 22:1016–1025

    Article  PubMed  Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Felsenstein J (2010) phylip (Phylogeny Inference Package) version 3.69, University of Washington, Seattle

  • Frankham R, Ballou JD, Briscoe DA (2009) Introduction to conservation genetics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed Central  CAS  PubMed  Google Scholar 

  • Funk WC, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S, Allendorf F (2005a) Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol 14:483–496

    Article  CAS  PubMed  Google Scholar 

  • Funk WC, Greene AE, Corn PS, Allendorf FW (2005b) High dispersal in a frog species suggests that it is vulnerable to habitat fragmentation. Biol Lett 1:13–16

    Article  PubMed Central  PubMed  Google Scholar 

  • Gao X, Giorgi F (2008) Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Global Planet Change 62:195–209

    Article  Google Scholar 

  • García-París M (2000) Alytes (Alytes) dickhilleni. In: Ramos MA et al (eds) Fauna Ibérica, vol 24., Museo Nacional de Ciencias NaturalesCSIC, Madrid, pp 288–293

    Google Scholar 

  • García-París M, Arntzen JW (2002) Alytes dickhilleni (Arntzen and García-París 1995). In: Pleguezuelos JM, Márquez R, Lizana M (eds) Atlas y Libro Rojo de los Anfibios y Reptiles de España, Dirección General de Conservación de la Naturaleza, Asociación Herpetológica Española, Madrid, pp 76–78

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  CAS  PubMed  Google Scholar 

  • Giordano AR, Ridenhour BJ, Storfer A (2007) The influence of altitude and topography on genetic structure in the long-toed salamander (Ambystoma macrodactulym). Mol Ecol 16:1625–1637

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves H, Martínez-Solano I, Ferrand N, García-París M (2007) Conflicting phylogenetic signal of nuclear vs mitochondrial DNA markers in midwife toads (Anura, Discoglossidae, Alytes): deep coalescence or ancestral hybridization? Mol Phylogenet Evol 44:494–500

  • Gonçalves H, Martínez-Solano I, Pereira R, Carvalho B, García-París M, Ferrand N (2009) High levels of population subdivision in a morphologically conserved mediterranean toad (Alytes cisternasii) result from recent, multiple refugia: evidence from mtDNA, microsatellites and nuclear genealogies. Mol Ecol 18:5143–5160

    Article  PubMed  Google Scholar 

  • Goudet J (2002) fstat, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). Available from http://www2.unil.ch/popgen/softwares/fstat.htm

  • Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hof C, Araújo MB, Jetz W, Rahbek C (2011) Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480:516–519

    CAS  PubMed  Google Scholar 

  • Holleley CE, Geerts PG (2009) Multiplex manager 1.0: a crossplatform computer program that plans and optimizes multiplex PCR. Biotechniques 46:511–517

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2014) Summary for policymakers. In: Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change (eds Field CB et al) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1–32.

  • Jakobsson M, Rosenberg NA (2007) clumpp: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Johansson M, Primmer CR, Sahlsten J, Merilä J (2005) The influence of landscape structure on occurrence, abundance and genetic diversity of the common frog, Rana temporaria. Glob Change Biol 11:1664–1679

    Article  Google Scholar 

  • Johansson M, Primmer CR, Merilä J (2006) History vs. current demography: explaining the genetic population structure of the common frog (Rana temporaria). Mol Ecol 15:975–983

    Article  CAS  PubMed  Google Scholar 

  • Jost L (2008) Gst and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Kraaijeveld-Smit FJL, Beebee TJC, Griffiths RA, Moore RD, Schley L (2005) Low gene flow but high genetic diversity in the threatened Mallorcan midwife toad Alytes muletensis. Mol Ecol 14:3303–3315

    Article  Google Scholar 

  • Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–655

    Article  CAS  Google Scholar 

  • Kuntner M, Năpăruş M, Li D, Coddington JA (2014) Phylogeny predicts future habitat shifts due to climate change. PLoS ONE 9(6):e98907. doi:10.1371/journal.pone.0098907

    Article  PubMed Central  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Article  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  CAS  PubMed  Google Scholar 

  • MAGRAMA (2012) Inventario Español de Especies Terrestres. Inventario Español del Patrimonio Natural y de la Biodiversidad. Ministerio de Agricultura, Alimentación y Medio Ambiente. http://www.magrama.es/es/biodiversidad/temas/inventarios-nacionales/inventario-especies-terrestres/inventario-nacional-de-biodiversidad/default.aspx

  • Maia-Carvalho B, Gonçalves H, Ferrand N, Martínez-Solano I (2014a) Multilocus assessment of phylogenetic relationships in Alytes (Anura, Alytidae). Mol Phylogenet Evol DOI: 10.1016/j.ympev.2014.05.033

  • Maia-Carvalho B, Gonçalves H, Martínez-Solano I, Gutiérrez-Rodríguez J, Lopes S, Ferrand N, Sequeira F (2014b) Intraspecific genetic variation in the common midwife toad (Alytes obstetricans): subspecies assignment using mitochondrial and microsatellite markers. J Zool Syst Evol Res 52:170–175

    Article  Google Scholar 

  • Manel S, Holderegger R (2013) Ten years of landscape genetics. Trends Ecol Evol 28:614–621

    Article  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Martínez-Solano I, González EG (2008) Patterns of gene flow and source-sink dynamics in high altitude populations of the common toad Bufo bufo (Anura: Bufonidae). Biol J Linn Soc 95:824–839

    Article  Google Scholar 

  • Martínez-Solano I, París M, Izquierdo E, García-París M (2003) Larval growth plasticity in wild populations of the betic midwife toad, Alytes dickhilleni (Anura: Discogloddidae). Herpetol J 13:89–94

    Google Scholar 

  • Martínez-Solano I, Rey I, García-París M (2005) The impact of historical and recent factors on genetic variability in a mountain frog: the case of Rana iberica (Anura: Ranidae). Anim Conserv 8:431–441

    Article  Google Scholar 

  • Milá B, Carranza S, Guillaume O, Clobert J (2010) Marked genetic structuring and extreme dispersal limitation in Pyrenean brook newt Calotriton asper (Amphibia: Salamandridae) revealed by genome- wide AFLP but not mtDNA. Mol Ecol 19:108–120

    Article  PubMed  Google Scholar 

  • Miller M (2005) Alleles In Space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J Hered 96:722–724

    Article  CAS  PubMed  Google Scholar 

  • Molecular Ecology Resources Primer Development Consortium et al (2011) Permanent genetic resources added to molecular ecology resources database december 2010–2031 January 2011: isolation and characterization of 13 highly polymorphic microsatellite loci in the Betic midwife toad Alytes dickhilleni. Mol Ecol Resour 11:586–589

    Article  Google Scholar 

  • Monsen KJ, Blouin M (2003) Genetic structure in a montane ranid frog: restricted gene flow and nuclear–mitochondrial discordance. Mol Ecol 12:3275–3286

    Article  CAS  PubMed  Google Scholar 

  • Noël S, Ouellet M, Galois P, Lapointe F-L (2007) Impact of urban fragmentation on the genetic structure of the eastern red-backed salamander. Conserv Genet 8:599–606

    Article  Google Scholar 

  • Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol Conserv 117:285–297

    Article  Google Scholar 

  • Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Bëer E, Robinson S, Vásquez-Carrillo C, Pauli JN, Palsbøll PJ (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21: 3403–3418

  • Piry S, Luikart G, Cornuet JM (1999) bottleneck: a computer program for detecting recent reduction in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Posada D (2008) jmodeltest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Pounds JA, Bustamente MR, Coloma LA, Consuegra JA, Fogden MPL et al (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Purrenhage JL, Niewiarowski PH, Moore FB-G (2009) Population structure of spotted salamanders (Ambystoma maculatum) in a fragmented landscape. Mol Ecol 18:235–247

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A, Drummond AJ (2009) tracer version 1.5, Available from http://beast.bio.ed.ac.uk/Tracer, Accessed at May 2012

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    Article  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) genepop (Version 1.2): a population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rödder D, Kielgast J, Bielby J, Schmidtlein S, Bosch J, Garner TJW, Veith M, Walker S, Fisher MC, Lötters S (2009) Global amphibian extinction risk assessment for the panzootic chytrid fungus. Diversity 1: 52–66

  • Rodríguez-Puebla C, Encinas AH, García-Casado LA, Nieto S (2010) Trends in warm days and cold nights over the Iberian Peninsula: relationships to large-scale variables. Clim Change 100:667–684

    Article  Google Scholar 

  • Román A (2002) Alytes muletensis (Sanchiz y Adrover, 1979). Atlas y Libro Rojo de los Anfibios y Reptiles de España (eds Pleguezuelos JM, Márquez R, Lizana M), Dirección General de Conservación de la Naturaleza, Asociación Herpetológica Española, Madrid, pp. 79–81

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  CAS  PubMed  Google Scholar 

  • Smith AL, Gardner MG, Fenner AL, Bull CM (2009) Restricted gene flow in the endangered pygmy bluetongue lizard (Tiliqua adelaidensis) in a fragmented agricultural landscape. Wildl Res 36:466–478

    Article  Google Scholar 

  • Spear SF, Peterson CR, Matocq MD, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564

    Article  CAS  PubMed  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1785

    Article  CAS  PubMed  Google Scholar 

  • Tajima F (1989) Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Thomas CD, Franco AMA, Hill JK (2006) Range retractions and extinction in the face of climate warming. Trends Ecol Evol 21:415–416

    Article  PubMed  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Wasserman TN, Cushman SA, Littell JS, Shirk AJ, Landguth EL (2013) Population connectivity and genetic diversity of American marten (Martes americana) in the United States northern Rocky Mountains in a climate change context. Conserv Genet 14:529–541

    Article  Google Scholar 

  • Weir BS (1996) Genetic data analysis II. Sinauer Associates, Sunderland, Mass

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of populations structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

For the help during sample collection we thank David Garcia and Alberto Escolano. For technical support during lab work we thank Susana Lopes and Bruno Carvalho. We thank to Fernando Sequeira and Iñigo Martínez-Solano for their valuable comments on the earlier version of this manuscript. This work was supported through Project “Genomics and Evolutionary Biology” cofinanced by North Portugal Regional Operational Programme 2007/2013 (ON.2—O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF); the Program Operacional Factores de Competitividade (COMPETE), and by national funds from Fundação para a Ciência e a Tecnologia (FCT), through the research Project PTDC/BIA-BEC/099915/2008 to HG, and CGL 2008-04814-C02/BOS from Spanish Ministerio de Ciencia y Innovación to JFB. Partial funding for field work was provided by Ministerio de Ciencia e Innovación, Spain, project TATANKA CGL2011-25062 (P.I. R Márquez). GD and HG are supported by a PhD grant (SFRH/BD89750/2012) and a postdoctoral Grant (SFRH/BPD/26555/2006), respectively, from FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Gonçalves.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, G., Beltrán, J.F., Tejedo, M. et al. Limited gene flow and high genetic diversity in the threatened Betic midwife toad (Alytes dickhilleni): evolutionary and conservation implications. Conserv Genet 16, 459–476 (2015). https://doi.org/10.1007/s10592-014-0672-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0672-2

Keywords

Navigation