Conservation Genetics

, Volume 16, Issue 1, pp 151–166 | Cite as

Genetic structure of a Neotropical sedentary fish revealed by AFLP, microsatellite and mtDNA markers: a case study

  • Dhiego G. Ferreira
  • Bruno A. Galindo
  • Wilson Frantine-Silva
  • Fernanda S. Almeida
  • Silvia H. Sofia
Research Article


Although sedentary fish populations are potentially more susceptible to loss of genetic diversity than migratory fish, our knowledge of the genetic structures of Neotropical fish populations is mostly limited to large and/or migratory species. Geophagus brasiliensis is a Neotropical fish that exhibits sedentary habits and parental care, and therefore provides a good model for a population genetic study of a non-migratory species. We used microsatellite, AFLP and mtDNA (D-loop) analysis on a population of G. brasiliensis extending along 250 km of a Neotropical river and one of its tributaries. The results showed that this species has low levels of genetic diversity by comparison with other Neotropical species. The three molecular markers used revealed a common pattern of genetic structure consisting of three groups in the samples examined, with distinguishing values ranging from low (<0.05) to very high (>0.25). The results suggest a partial restriction of gene flow between populations along certain stretches of river. In general, our results indicated that even over short stretches, species genetic diversity is unevenly distributed throughout the basin, a feature that should be taken into account in future management and conservation actions.


Cichlidae Geophagus brasiliensis Genetic structure Population genetics 



We are grateful to the Araucaria Foundation for financial support; to the Coordination for the Improvement of Higher Education Personnel (CAPES) for the scholarship awarded to D.G. Ferreira; to Dr Oscar Akio Shibatta (State University of Londrina) for his help in identifying the species studied, and to IBAMA (Brazilian Institute of Environment and Renewable Natural Resources)/ICMBio-System (Institute Chico Mendes—MMA) and IAP (Environmental Institute of Paraná) for permission to collect samples. The authors would also like to thank the two anonymous reviewers for their valuable comments aimed at improving the quality of this paper. Silvia H. Sofia is a research fellow at the Brazilian Council for Scientific and Technological Development (CNPq).

Supplementary material

10592_2014_648_MOESM1_ESM.doc (48 kb)
Supplementary material 1 (DOC 48 kb)
10592_2014_648_MOESM2_ESM.doc (30 kb)
Supplementary material 2 (DOC 30 kb)
10592_2014_648_MOESM3_ESM.doc (73 kb)
Supplementary material 3 (DOC 73 kb)


  1. Abelha MCF, Goulart E (2004) Oportunismo trófico de Geophagus brasiliensis (Quoy & Gaimard, 1824) (Osteichthyes, Cichlidae) no reservatório de Capivari, Estado do Paraná, Brasil. Acta Sci Biol Sci 26:37–45CrossRefGoogle Scholar
  2. Abreu MM, Pereira LHG, Vila VB, Foresti F, Oliveira C (2009) Genetic variability of two populations of Pseudoplatystoma reticulatum from the Upper Paraguay River Basin. Braz J Biol 69:681–689CrossRefGoogle Scholar
  3. Adamson EAS, Hurwood DA, Mather PB (2012) Insights into historical drainage evolution based on the phylogeography of the chevron snakehead fish (Channa striata) in the Mekong Basin. Freshw Biol 57:2211–2229CrossRefGoogle Scholar
  4. Agostinho AA, Gomes LC, Fernandes DR, Suzuki HI, Júlio HF Jr (2003) Migratory fishes of the upper Paraná River Basin, Brazil. In: Carolsfeld J, Harvey B, Ross C, Baer A (eds) Migratory fishes of South America: biology, fisheries and conservation status. World Fisheries Trust/Word Bank/International Development Research Centre, Washington DC, pp 19–98Google Scholar
  5. Agostinho AA, Thomaz SM, Gomes LC (2005) Conservation of the biodiversity of Brazil’s inland waters. Conserv Biol 19:646–652CrossRefGoogle Scholar
  6. Allendorf FW, Luikart GH, Aitken SN (2012) Conservation and the genetics of populations, 2nd edn. Wiley Blackwell Publishing, OxfordGoogle Scholar
  7. Almeida FS, Fungaro MHP, Sodré LMK (2001) RAPD and isoenzyme analysis of genetic variability in three allied species of catfish (Siluriformes: Pimelodidae) from the Tibagi River, Brazil. J Zool (Lond) 253:113–120CrossRefGoogle Scholar
  8. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  9. Araújo FG, Santos LN (2001) Distribution of fish assemblages in Lajes reservoir, Rio de Janeiro, Brazil. Braz J Biol 61:563–576PubMedCrossRefGoogle Scholar
  10. Avise JC (2004) Molecular markers, natural history and evolution, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  11. Ayres M, Ayres Júnior M, Ayres DL, Santos AS (2007) BioEstat 5.0: Aplicações estatísticas nas áreas das Ciências Biológicas e Médicas, Sociedade Civil Mamirauá, BelémGoogle Scholar
  12. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedCrossRefGoogle Scholar
  13. Calcagnotto D, DeSalle R (2009) Population genetic structuring in pacu (Piaractus mesopotamicus) across the Paraná-Paraguay basin: evidence from microsatellites. Neotrop Ichthyol 7:607–616CrossRefGoogle Scholar
  14. Carlsson J, Nilsson J (2000) Population genetic structure of brown trout (Salmo trutta L.) within a northern boreal forest stream. Hereditas 132:173–181PubMedCrossRefGoogle Scholar
  15. Carlsson J, Olsen HK, Nilsson J, Overli O, Stabell OB (1999) Microsatellites reveal fine-scale genetic structure in stream-living brown trout. J Fish Biol 55:1290–1303CrossRefGoogle Scholar
  16. Castro RMC, Casatti L, Santos HF, Ferreira KM, Ribeiro AC, Benine RC, Dardis GZP, Melo ALA, Stopiglia R, Abreu TX, Bockmann FA, Carvalho M, Gibran FZ, Lima FTC (2003) Estrutura e composição da ictiofauna de riachos do Rio Paranapanema, sudeste do Brasil. Biota Neotrop 3:1–31CrossRefGoogle Scholar
  17. Castro RMC, Casatti L, Santos HF, Melo ALA, Martins LSF, Ferreira KM, Gibran FZ, Benine RC, Carvalho M, Ribeiro AC, Abreu TX, Bockmann FA, Pelição GZ, Stopiglia R, Langeani F (2004) Estrutura e composição da ictiofauna de riachos da bacia do Rio Grande, no Estado de São Paulo, Sudeste do Brasil. Biota Neotrop 4:1–39CrossRefGoogle Scholar
  18. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631PubMedCrossRefGoogle Scholar
  19. Coelho ASG (2001) Software: Dboot—Avaliação de dendrogramas baseados em estimativas de distâncias/similaridades genéticas através do procedimento de bootstrap, versão 3.0. Universidade Federal de Goiás, GoiâniaGoogle Scholar
  20. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedCentralPubMedGoogle Scholar
  21. Costa ADA, Ferreira DG, Silva WF, Zanatta AS, Shibatta AO, Galindo BA (2013) Fishes (Osteichthyes: Actinopterygii) from the Penacho stream, upper Paraná River basin, Paraná State, Brazil. Check List 9:519–523Google Scholar
  22. Crandall KA, Bininda-Emonds OR, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295PubMedCrossRefGoogle Scholar
  23. Crawford N (2010) SMOGD: software for the measurement of genetic diversity. Mol Ecol Resour 10:556–557PubMedCrossRefGoogle Scholar
  24. Cristescu R, Sherwin WB, Handasyde K, Cahill V, Cooper DW (2010) Detecting bottlenecks using BOTTLENECK 1.2. 02 in wild populations: the importance of the microsatellite structure. Conserv Genet 11:1043–1049CrossRefGoogle Scholar
  25. Cronin MA, Spearman WJ, Wilmot RL, Patton JC (1993) Mitochondrial DNA variation in chinook (Oncorhynchus tshawytscha) and chum salmon (O. keta) detected by restriction enzyme analysis of polymerase chain reaction (PCR) products. Can J Fish Aquat Sci 50:708–715CrossRefGoogle Scholar
  26. David L, Rajasekaran P, Fang J, Hillel J, Lavi U (2001) Polymorphism in ornamental and common carp strains (Cyprinus carpio L.) as revealed by AFLP analysis and a new set of microsatellite markers. MGG Mol Genet Genomics 266:353–362CrossRefGoogle Scholar
  27. DeWoody JA, Avise JC (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol 56:461–473CrossRefGoogle Scholar
  28. Earl DA, VonHoldt BM (2011) Structure Harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  29. Esteves KE, Aranha JMR (1999) Ecologia trófica de peixes de riachos. In: Caramaschi EP, Mazzoni R, Bizerril CRSF, Peres-Neto PR (eds) Ecologia de Peixes de Riachos: Estado Atual e Perspectivas. Oecologia Brasiliensis, Rio de Janeiro, pp 157–182Google Scholar
  30. Estoup A, Angers B (1998) Microsatellites and minisatellites for molecular ecology: theoretical and experimental considerations. In: Carvallo G (ed) Advances in molecular ecology. NATO Press, Amsterdam, pp 55–86Google Scholar
  31. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  32. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedCentralPubMedGoogle Scholar
  33. Excoffier LG, Laval A, Scheneider S (2005) Arlequin ver 3.1: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50Google Scholar
  34. Ferreira DG, Galindo BA, Alves AN, Almeida FS, Ruas CF, Sofia SH (2013) Development and characterization of 14 microsatellite loci in the Neotropical fish Geophagus brasiliensis (Perciformes, Cichlidae). J Fish Biol 83:1430–1438PubMedCrossRefGoogle Scholar
  35. Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  36. Freeland JR (2005) Molecular ecology. John Wiley & Sons Ltd, ChichesterGoogle Scholar
  37. Fu YX (1997) Statistical test of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedCentralPubMedGoogle Scholar
  38. Garcez R, Calcagnotto D, Almeida-Toledo LF (2011) Population structure of the migratory fish Prochilodus lineatus (Characiformes) from Rio Grande basin (Brazil), an area fragmented by dams. Aquat Conserv Mar Freshw Ecosyst 21:268–275CrossRefGoogle Scholar
  39. Geist J (2011) Integrative freshwater ecology and biodiversity conservation. Ecol Ind 11:1507–1516CrossRefGoogle Scholar
  40. Goodwin NB, Balshine-Earn S, Reynolds JD (1998) Evolutionary transitions in parental care in cichlid fish. Proc R Soc Lond B Biol Sci 265:2265–2272CrossRefGoogle Scholar
  41. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3. Accessed 10 Sept 2012
  42. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  43. Hartl DL, Clark AG (2007) Principles of population genetics. Sinauer Associates Inc., Publishers, SunderlandGoogle Scholar
  44. Horai S, Hayasaka K (1990) Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA. Am J Hum Genet 46:828–842PubMedCentralPubMedGoogle Scholar
  45. Hughes JM, Real KM, Marshall JC, Schmidt DJ (2012) Extreme genetic structure in a small-bodied freshwater fish, the purple spotted gudgeon, Mogurnda adspersa (Eleotridae). PLoS One 7(e40546):1–11Google Scholar
  46. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026PubMedCrossRefGoogle Scholar
  47. Kimura M, Weiss GH (1964) Stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49:561–576PubMedCentralPubMedGoogle Scholar
  48. Kullander SO (2003) Family Cichlidae (Cichlids). In: Reis RE, Kullander SO, Ferraris CJ Jr (eds) Check list of the freshwater fishes of South and Central America. EDIPUCRS, Porto Alegre, pp 605–654Google Scholar
  49. Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460PubMedCrossRefGoogle Scholar
  50. Langen K, Schwarzer J, Kullmann H, Bakker TCM, Thunken T (2011) Microsatellite support for active inbreeding in a cichlid fish. Plos One 6:1–9CrossRefGoogle Scholar
  51. Lassala MDP, Renesto E (2007) Reproductive strategies and genetic variability in tropical freshwater fish. Genet Mol Biol 30:690–697CrossRefGoogle Scholar
  52. Leuzzi MSP, Almeida FSD, Orsi ML, Sodré LMK (2004) Analysis by RAPD of the genetic structure of Astyanax altiparanae (Pisces, Characiformes) in reservoirs on the Paranapanema River, Brazil. Genet Mol Biol 27:355–362CrossRefGoogle Scholar
  53. Lévêque C, Oberdorff T, Paugy D, Stiassny MLJ, Tedesco PA (2008) Global diversity of fish (Pisces) in freshwater. Hydrobiologia 595:545–567CrossRefGoogle Scholar
  54. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  55. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964PubMedCentralPubMedCrossRefGoogle Scholar
  56. Lowe-Mcconnell RH (1991) Ecology of cichlids in South American and African waters, excluding the African Great Lakes. In: Keenleyside MHA (ed) Cichlid fishes behavior, ecology, and evolution. Chapman and Hall, London, pp 60–85Google Scholar
  57. Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237CrossRefGoogle Scholar
  58. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247PubMedCrossRefGoogle Scholar
  59. Luiz EA, Agostinho AA, Gomes LC, Hahn NS (1998) Ecologia trófica de peixes em dois riachos da bacia do Rio Paraná. Rev Brasil Biol 58:273–285Google Scholar
  60. Mariette S, Chagné D, Lézier C, Pastuszka P, Raffin A, Plomion C, Kremer A (2001) Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers. Heredity 86:469–479PubMedCrossRefGoogle Scholar
  61. Martins C, Wasko AP, Oliveira C, Foresti F (2003) Mitochondrial DNA variation in wild populations of Leporinus elongatus from the Paraná River basin. Genet Mol Biol 26:33–38CrossRefGoogle Scholar
  62. Matoso DA, Martins C, Artoni RF, Galetti PM Jr (2010) Preliminary qualitative analysis on DNAmt in Astyanax fasciatus populations Cuvier, 1819 (Teleostei, Characidae) indicate population distinctiveness. Braz Arch Biol Technol 53:663–667CrossRefGoogle Scholar
  63. Matsumoto CK, Hilsdorf AWS (2009) Microsatellite variation and population genetic structure of a neotropical endangered Bryconinae species Brycon insignis Steindachner, 1877: implications for its conservation and sustainable management. Neotrop Ichthyol 7:395–402CrossRefGoogle Scholar
  64. Meffe GK, Vrigenhoek RC (1988) Conservation genetics in the management of desert fishes. Conserv Biol 2:157–169CrossRefGoogle Scholar
  65. Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18PubMedCrossRefGoogle Scholar
  66. Menezes N, Weitzman SH, Oyakawa O, Lima FCT, Castro RMC, Weitzman MJ (2007) Peixes de água doce da bacia da Mata Atlântica. Lista preliminar de espécies e comentários sobre conservação de peixes de água doce Neotropicais. Museu de Zoologia, Universidade de São Paulo, São PauloGoogle Scholar
  67. Meyer A, Kocher TD, Basasibwaki P, Wilson AC (1990) Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347:550–553PubMedCrossRefGoogle Scholar
  68. Miller MP (1997) Tools for population genetic analyses (TFPGA): a Windows program for the analysis of allozyme and molecular population genetic data, version 1.3.
  69. Moeser AA, Bermingham E (2005) Isolation and characterization of eight microsatellite loci for the Neotropical freshwater catfish Pimelodella chagresi (Teleostei: Pimelodidae). Mol Ecol Notes 5:363–365CrossRefGoogle Scholar
  70. Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238–254PubMedCrossRefGoogle Scholar
  71. Moysés CB, Almeida-Toledo LFD (2002) Restriction fragment length polymorphisms of mitochondrial DNA among five freshwater fish species of the genus Astyanax (Pisces, Characidae). Genet Mol Biol 25:401–407CrossRefGoogle Scholar
  72. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedCentralPubMedGoogle Scholar
  73. Paiva SR, Dergam JA, Machado F (2006) Determining management units in southeastern Brazil: the case of Astyanax bimaculatus (Linnaeus, 1758) (Teleostei: Ostariophysi: Characidae). Hydrobiologia 560:393–404CrossRefGoogle Scholar
  74. Pereira LHG, Foresti F, Oliveira O (2009) Genetic structure of the migratory catfish Pseudoplatystoma corruscans (Siluriformes: Pimelodidae) suggests homing behavior. Ecol Freshw Fish 18:215–225CrossRefGoogle Scholar
  75. Philippsen JS, Renesto E, Geahl AM, Artoni RF, Shibatta OA, Zawadzki CH (2009) Genetic variability in four samples of Neoplecostomus yapo (Teleostei: Loricariidae) from the Paranapanema basin, Brazil. Neotrop Ichthyol 7:25–30CrossRefGoogle Scholar
  76. Piorski NM, Sanches A, Carvalho-Costa LF, Hatanaka T, Carrillo-Avila M, Freitas PD, Galetti PM Jr (2008) Contribution of conservation genetics in assessing neotropical freshwater fish biodiversity. Braz J Biol 68:1039–1050PubMedCrossRefGoogle Scholar
  77. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  78. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  79. Raymond M, Rousset M (1995) Genepop (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  80. Reck M, Benício LM, Ruas EA, Rodrigues LA, Ruas PM, Ortiz MA, Talavera S, Urtubey E, Stuessy T, Weiss-Schneeweiss H et al (2011) Karyotype and AFLP data reveal the phylogenetic position of the Brazilian endemic Hypochaeris catharinensis (Asteraceae). Plant Syst Evol 296:231–243CrossRefGoogle Scholar
  81. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  82. Santos MCF, Ruffino ML, Farias IF (2007) High levels of genetic variability and panmixia of the tambaqui Colossoma macropomum (Cuvier, 1816) in the main channel of the Amazon River. J Fish Biol 71:33–44CrossRefGoogle Scholar
  83. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnol 18:223–234CrossRefGoogle Scholar
  84. Shibatta AO, Silva-Souza AT (2008) Fish, Ribeirão do Feijão basin, São Carlos, São Paulo, Brazil. Checklist 4:75–78Google Scholar
  85. Slatkin M (1985) Gene flow in natural populations. Ann Rev Ecol Syst 16:393–430CrossRefGoogle Scholar
  86. Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279CrossRefGoogle Scholar
  87. Sofia SH, Silva CR, Galindo BA, Almeida FS, Sodré LM, Martinez CB (2006) Population genetic structure of Astyanax scabripinnis (Teleostei, Characidae) from an urban stream. Hydrobiologia 553:245–254CrossRefGoogle Scholar
  88. Sofia SH, Galindo BA, Paula FM, Sodré LMK, Martinez CBR (2008) Genetic diversity of Hypostomus ancistroides (Teleostei, Loricariidae) from an urban stream. Genet Mol Biol 31:317–323CrossRefGoogle Scholar
  89. Smith WS, Petrere-Jr M, Barrela W (2003) The fish fauna in tropical rivers: The case of the Sorocaba river, SP, Brazil. Rev Biol Trop 51:769–782Google Scholar
  90. Soulé ME, Simberloff D (1986) What do genetics and ecology tell us about the design of nature reserves? Biol. Conserv 35:19–40CrossRefGoogle Scholar
  91. Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: recent progress and future challenges. J North Am Benthol Soc 29:344–358CrossRefGoogle Scholar
  92. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedCentralPubMedGoogle Scholar
  93. Teixeira TP, Pinto BCT, Terra BF, Estiliano EO, Gracia D, Araújo FG (2005) Diversidade das assembléias de peixes nas quatro unidades geográficas do rio Paraíba do Sul. Iheringia Ser Zoll 95:347–357Google Scholar
  94. Templeton AR (2006) Population genetics and microevolutionary theory. John Wiley and Sons Inc, HobokenCrossRefGoogle Scholar
  95. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCentralPubMedCrossRefGoogle Scholar
  96. Togawa RC, Brigido MM (2003) Phph: web based tool for simple electropherogram quality analysis. In: 1st international conference on bioinformatics and computational biology, Ribeirão PretoGoogle Scholar
  97. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley PF (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  98. Vos R, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP: a new concept for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCentralPubMedCrossRefGoogle Scholar
  99. Vrijenhoek RC (1998) Conservation genetics of freshwater fish. J Fish Biol 53:394–412CrossRefGoogle Scholar
  100. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  101. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMedCentralPubMedGoogle Scholar
  102. Wimberger PH (1992) Plasticity of fish body shape: the effects of diet, development, family and age in two species of Geophagus (Pisces: Cichlidae). Biol J Linn Soc 45:197–218CrossRefGoogle Scholar
  103. Winemiller KO (1989) Patterns of variation in life history among South American fishes in seasonal environments. Oecologia 81:225–241CrossRefGoogle Scholar
  104. Wright S (1978) Evolution and the genetics of populations. University of Chicago, ChicagoGoogle Scholar
  105. Yeh FC, Yang R, Boyle TJ, Xiyan JM (2000) Pop Gene 32. Microsoft window-based freeware for population genetic analysis, v.1.32. Molecular Biology and Biotechnology Center, University of Alberta, EdmontonGoogle Scholar
  106. Zawadzki CH, Renesto E, Reis RE, Moura MO, Mateus RP (2005) Allozyme relationships in hypostomines (Teleostei: Loricariidae) from the Itaipu reservoir, Upper Rio Paraná basin, Brazil. Genetica 123:271–283PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Dhiego G. Ferreira
    • 1
    • 2
  • Bruno A. Galindo
    • 3
  • Wilson Frantine-Silva
    • 1
    • 2
  • Fernanda S. Almeida
    • 1
  • Silvia H. Sofia
    • 1
  1. 1.Laboratório de Genética e Ecologia Animal (LAGEA), Depto. de Biologia GeralUniversidade Estadual de LondrinaLondrinaBrazil
  2. 2.Programa de Pós-Graduação em Genética e Biologia MolecularUniversidade Estadual de LondrinaLondrinaBrazil
  3. 3.Laboratório de Genética e Conservação (GECON)Universidade Estadual do Norte ParanáCornélio ProcópioBrazil

Personalised recommendations