Conservation Genetics

, Volume 14, Issue 6, pp 1173–1184 | Cite as

Uncovering cryptic evolutionary diversity in extant and extinct populations of the southern Australian arid zone Western and Thick-billed Grasswrens (Passeriformes: Maluridae: Amytornis)

  • Jeremy J. Austin
  • Leo Joseph
  • Lynn P. Pedler
  • Andrew B. Black
Research Article


The Western and Thick-billed Grasswrens (Aves: Passeriformes: Maluridae: Amytornis textilis and Amytornis modestus, respectively) exemplify issues surrounding the evolution, biogeography and conservation of Australia’s arid and semi-arid zone fauna. The two species together have historically occurred across much of southern Australia. They showed high intraspecific taxonomic diversity and short range endemism but suffered high rates of recent anthropogenic extinction. Of 11 named and 1 un-named subspecies, 5 are extinct and 3 are vulnerable or critically endangered. To clarify taxonomic issues, and to understand their pre-extinction phylogeography and identify extant populations and taxa of conservation value, we sequenced ~1,000 bp of the mtDNA ND2 gene from all extant populations and all but one extinct population. We confirmed reciprocal monophyly of A. modestus and A. textilis and identified strong phylogeographic structure associated with morphological divergence within each species. Populations of A. t. myall at the western edge of their range in South Australia may preserve “ghost” lineages of extinct subspecies from Western Australia as a result of ancient gene flow. Our results support recent taxonomic revisions, and highlight the critical importance of including samples of extirpated populations and extinct species to fully understand and interpret extant diversity. Conservation and management plans should recognise and seek to preserve the unique evolutionary diversity present in surviving populations.


Amytornis grasswren Australian arid zone phylogeography Extinction biogeography 



We thank the administration of Museum Victoria, Melbourne and its present or former staff Wayne Longmore, Janette Norman, Joanna Sumner and Vanessa Thompson; Philippa Horton (South Australian Museum, Adelaide), Walter Boles (Australian Museum, Sydney) and Robert Palmer (Australian National Wildlife Collection, Canberra) for access to samples. All collectors of specimens and permit-granting agencies are owed a special debt of gratitude. We thank Graham Carpenter for assistance with producing Fig. 3. JJA is supported by an ARC Future Fellowship. We thank two anonymous reviewers for helpful comments that improved the manuscript.

Supplementary material

10592_2013_504_MOESM1_ESM.docx (144 kb)
Supplementary material 1 (DOCX 145 kb)


  1. Baird RF (1990) The fossil avian assemblage from Weekes Cave (N-15), Nullarbor Plain, South Australia: corrections, additions and reinterpretation. S Austral Ornithol 31:29–34Google Scholar
  2. Ballard JW, Rand DM (2005) The population biology of mitochondrial DNA and its phylogenetic implications. Annu Rev Ecol Evol Syst 36:621–642CrossRefGoogle Scholar
  3. Black AB (2004) The ‘Immarna’ grasswrens of R. C. Chandler: locality, habitat, identity and taxonomic implications. S Austral Ornithol 34:199–211Google Scholar
  4. Black AB (2011a) Subspecies of the Thick-billed Grasswren Amytornis modestus (Aves-Maluridae). Trans R Soc S Austr 135:26–38Google Scholar
  5. Black AB (2011b) Western Australia, home of the Grass-Wren (Amytornis textilis). Amytornis 3:1–12Google Scholar
  6. Black AB (2012) Distribution of the Thick-billed Grasswren in the Northern Territory. Austr Field Orn 29:15–22Google Scholar
  7. Black AB, Carpenter G, Pedler L (2009) Distribution and habitats of the Thick-billed Grasswren Amytornis textilis subspecies myall. S Austral Ornithol 35:161–177Google Scholar
  8. Black AB, Joseph L, Pedler LP, Carpenter GA (2010) A taxonomic framework for interpreting evolution within the Amytornis textilis-modestus complex of grasswrens. Emu 110:358–363CrossRefGoogle Scholar
  9. Black AB, Carpenter G, Pedler L (2011) Distribution and habitats of the Thick-billed Grasswren Amytornis modestus and comparison with the Western Grasswren Amytornis textilis myall in South Australia. S Austral Ornithol 37:60–80Google Scholar
  10. Byrne M, Yeates DK, Joseph L, Kearney M, Bowler J, Williams MAJ, Cooper S, Donnellan SC, Keogh JS, Leys R, Melville J, Murphy DJ, Porch N, Wyrwoll K-H (2008) Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Mol Ecol 17:4398–4417Google Scholar
  11. Christidis L (1999) Evolution and biogeography of the Australian grasswrens, Amytornis (Aves: Maluridae): biochemical perspectives. Austral J Zool 47:113–124CrossRefGoogle Scholar
  12. Christidis L, Horton P, Norman JA (2008) Subspeciation in the short-tailed grasswren (Amytornis merrotsyi, Maluridae). Emu 108:275–282CrossRefGoogle Scholar
  13. Christidis L, Rheindt FE, Boles WE, Norman JA (2010) Plumage patterns are good indicators of taxonomic diversity, but not of phylogenetic affinities, in Australian grasswrens Amytornis (Aves: Maluridae). Mol Phylogenet Evol 57:868–877PubMedCrossRefGoogle Scholar
  14. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659Google Scholar
  15. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772PubMedCrossRefGoogle Scholar
  16. Dolman G, Joseph L (2012) A species assemblage approach to comparative phylogeography of birds in southern Australia. Ecol Evol 2:354–369PubMedCrossRefGoogle Scholar
  17. Donnellan SC, Armstrong J, Pickett M, Milne T, Baulderstone J, Hollfelder T, Bertozzi T (2009) Systematic and conservation implications of mitochondrial DNA diversity in emu-wrens, Stipiturus (Aves: Maluridae). Emu 109:143–152CrossRefGoogle Scholar
  18. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUTi and the BEAST 1.7 Mol. Biol Evol 29:1969–1973CrossRefGoogle Scholar
  19. Edwards S, Bensch S (2009) Looking forwards or looking backwards in avian phylogeography? A comment on Zink and Barrowclough 2008. Mol Ecol 18:2930–2933PubMedCrossRefGoogle Scholar
  20. Ford J (1974) Speciation in Australian birds adapted to arid habitats. Emu 74:161–168CrossRefGoogle Scholar
  21. Ford J (1987) Minor isolates and minor geographic barriers in avian speciation in continental Australia. Emu 87:90–102CrossRefGoogle Scholar
  22. Garnett ST, Szabo JK, Dutson G (2011) The action plan for Australian birds 2010. CSIRO Publishing, Melbourne, p 442Google Scholar
  23. Guay P-J, Chesser RT, Mulder RA, Afton AD, Paton DC, McCracken KG (2010) East–west genetic differentiation in Musk Ducks (Biziura lobata) of Australia suggests late Pleistocene divergence at the Nullarbor Plain. Conserv Genet 11:2105–2120CrossRefGoogle Scholar
  24. Joseph L, Wilke T (2006) Molecular resolution of population history, systematics and historical biogeography of the Australian ringneck parrots Barnardius: are we there yet? Emu 106:49–62CrossRefGoogle Scholar
  25. Joseph L, Edwards S, McLean, A (2013) The Maluridae: inferring avian biology and evolutionary history from DNA sequences. Emu, in review, October–December 2012Google Scholar
  26. Kearns AM, Joseph L, Edwards SV, Double MC (2009) Inferring the phylogeography and evolutionary history of the splendid fairy-wren Malurus splendens from mitochondrial DNA and spectrophotometry. J Avian Biol 40:7–17CrossRefGoogle Scholar
  27. Keast JA (1958) Speciation in the genus Amytornis Stejneger (Passeres: Muscicapidae, Malurinae) in Australia. Aust J Zool 6:33–52CrossRefGoogle Scholar
  28. Keast JA (1961) Bird speciation on the Australian continent. Bull Mus Compar Zool 123:303–495Google Scholar
  29. Lerner HRL, Meyer M, James HF, Hofreiter M, Fleischer RC (2011) Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers. Curr Biol 21:1838–1844PubMedCrossRefGoogle Scholar
  30. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452Google Scholar
  31. McAllan IAW (1987) Early records of the Thick-billed Grasswren Amytornis textilis and Striated Grasswren Amytornis striatus in New South Wales. Aust Birds 28:65–70Google Scholar
  32. Murphy SA, Joseph L, Burbidge AH, Austin JJ (2011) A cryptic and critically endangered species revealed by mitochondrial DNA analyses: the Western Ground Parrot. Conserv Genet 12:595–600CrossRefGoogle Scholar
  33. Neaves LE, Zenger KR, Prince RIT, Eldridge MDB, Cooper DW (2009) Landscape discontinuities influence gene flow and genetic structure in a large, vagile Australian mammal, Macropus fuliginosus. Mol Ecol 18:3363–3378PubMedCrossRefGoogle Scholar
  34. Neaves L, Zenger K, Prince R, Eldridge M (2012) Impact of Pleistocene aridity oscillations on the population history of a widespread, vagile Australian mammal, Macropus fuliginosus. J Biogeogr 39:1545–1563CrossRefGoogle Scholar
  35. Nicholls JA, Double MC, Rowell DM, Magrath RD (2000) The evolution of cooperative and pair breeding in thornbills Acanthiza (Pardalotidae). J Avian Biol 31:165–176CrossRefGoogle Scholar
  36. Omland KE, Baker JM, Peters JL (2006) Genetic signatures of intermediate divergence: population history of Old and New World Holarctic ravens (Corvus corax). Mol Ecol 15:795–808PubMedCrossRefGoogle Scholar
  37. Parker SA (1972) Remarks on the distribution and taxonomy of the grass-wrens Amytornis textilis, modestus and purnelli. Emu 72:157–166CrossRefGoogle Scholar
  38. Pavlova A, Amos JN, Joseph L, Loynes K, Austin JJ, Keogh JS, Stone GN, Nicholls JA, Sunnucks P (2013) Perched at the mito-nuclear crossroads: divergent mitochondrial lineages correlate with environment in the face of ongoing nuclear gene flow in an Australian bird. Evolution. doi: 10.1111/evo.12107
  39. Rambaut A, Drummond AJ (2007) Tracer v1.4, Available from Accessed 28 April 2013
  40. Ribeiro AM, Lloyd P, Bowie RCK (2011) A tight balance between natural selection and gene flow in a southern African arid-zone endemic bird. Evolution 65:3499–3514PubMedCrossRefGoogle Scholar
  41. Ribeiro AM, Lopes RJ, Bowie RCK (2012) Historical demographic dynamics underlying local adaptation in the presence of gene flow. Ecol Evol 2:2710–2721PubMedCrossRefGoogle Scholar
  42. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Sys Biol 61:539–542Google Scholar
  43. Rowley I (2001) Family Maluridae Australo-Papuan fairy-wrens, emu-wrens and grasswrens. In: P.J. Higgins PJ, Peter JM, Steele WK (eds) Handbook of Australian, New Zealand and Antarctic Birds. Tyrant-flycatchers to Chats. Volume 5. Oxford University Press, Melbourne, pp 257–260Google Scholar
  44. Schodde R (1982a) Origin, adaptation and evolution of birds in arid Australia. In: Barker WR, Greenslade PJM (eds) Evolution of the flora and fauna of arid Australia. Peacock Publications, Adelaide, pp 191–224Google Scholar
  45. Schodde R (1982b) The fairy-wrens: a monograph of the Maluridae. Lansdowne Editions, Melbourne, p 203Google Scholar
  46. Schodde R, Mason IJ (1999) The directory of Australian birds: Passerines. CSIRO Publishing, Melbourne, p 851Google Scholar
  47. Serventy DL (1972) Causal ornithogeography of Australia. In: Voous K (ed) Proceedings of the 15th international ornithological congress, The Hague. E. J. Brill, Leiden, pp 574–584Google Scholar
  48. Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phylogenet Evol 12:105–114PubMedCrossRefGoogle Scholar
  49. Toon A, Hughes JM, Joseph L (2010) Multilocus analysis of honeyeaters (Aves: Meliphagidae) highlights spatio-temporal heterogeneity in the influence of biogeographical barriers in the Australian monsoonal zone. Mol Ecol 19:2980–2994PubMedCrossRefGoogle Scholar
  50. Toon A, Austin JJ, Dolman G, Pedler L, Joseph L (2012) Evolution of arid zone birds in Australia: leapfrog distribution patterns and mesic-arid connections in quail-thrush (Cinclosoma, Cinclosomatidae). Mol Phylogenet Evol 62:286–295PubMedCrossRefGoogle Scholar
  51. Webb WC, Marzluff JM, Omland KE (2011) Random interbreeding between cryptic lineages of the common raven: evidence for speciation in reverse. Mol Ecol 20:2390–2402PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jeremy J. Austin
    • 1
    • 2
  • Leo Joseph
    • 3
  • Lynn P. Pedler
    • 4
  • Andrew B. Black
    • 5
  1. 1.Australian Centre for Ancient DNA, School of Earth and Environmental Sciences and Environment InstituteUniversity of AdelaideAdelaideAustralia
  2. 2.Sciences DepartmentMuseum VictoriaMelbourneAustralia
  3. 3.Australian National Wildlife CollectionCSIRO Ecosystem SciencesCanberraAustralia
  4. 4.KoolungaAustralia
  5. 5.Ornithology SectionSouth Australian MuseumAdelaideAustralia

Personalised recommendations