Skip to main content

Advertisement

Log in

The genetic structure of populations of Metrioptera bicolor in a spatially structured landscape: effects of dispersal barriers and geographic distance

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The stability and long-term survival of animal populations in fragmented landscapes largely depends on the colonisation of habitat patches and the exchange of individuals between patches. The degree of inter-patch dispersal, in turn, depends on the dispersal abilities of species and the landscape structure (i.e. the nature of the landscape matrix and habitat distribution). Here, we investigated the genetic structure of populations of Metrioptera bicolor, a wing-dimorphic bush cricket, in a spatially structured landscape with patches of suitable habitat distributed within a diverse matrix of different habitat types. Using six microsatellite markers, we assessed the effects of geographic distance and different matrix types on the extent of genetic differentiation among 24 sampling sites. We found that forest and a river running through the study area both impede inter-patch dispersal. The presence of these two matrix types was positively correlated with the extent of genetic differentiation between sites. In addition, we found a significant positive correlation between pairwise genetic and geographic distances for a subsample of sites which were separated only by arable land or settlements. For the complete data set, this correlation could not be found. This is most probably because the adverse effect of forest and river on gene flow dominates the effect of geographic distance in our limited set of patches. Our analyses clearly emphasize the differential resistance of different habitat types on dispersal and the importance of a more detailed view on matrix “quality” in metapopulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrén H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71(3):355–366

    Article  Google Scholar 

  • Antolin M, Savage L, Eisen R (2006) Landscape features influence genetic structure of black-tailed prairie dogs (Cynomys ludovicianus). Landsc Ecol 211:867–875

    Article  Google Scholar 

  • Baker PS, Gewecke M, Cooter RJ (1981) The natural flight of migratory locust, Locusta migratoria L.: III. wing-beat frequency, flight speed and attitude. J Comp Physiol A 141(2):233–237

    Article  Google Scholar 

  • Berggren A, Carlson A, Kindvall O (2001) The effect of landscape composition on colonization success, growth rate and dispersal in introduced bush-crickets Metrioptera roeselii. J Anim Ecol 70:663–670

    Article  Google Scholar 

  • Berggren A, Birath B, Kindvall O (2002) Effect of corridors and habitat edges on dispersal behaviour, movement rates, and movement angles in Roesel’s bush-cricket (Metrioptera roeselii). Conserv Biol 16(6):1562–1569

    Article  Google Scholar 

  • Biswas SR, Wagner HH (2012) Landscape contrast: a solution to hidden assumptions in the metacommunity concept? Landsc Ecol 27(5):621–631

    Article  Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74(1):21–45

    Article  PubMed  CAS  Google Scholar 

  • Bohonak AJ (2002) IBD (isolation by distance): a program for analyses of isolation by distance. J Hered 93:153–154

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58(22):445–449

    Article  Google Scholar 

  • Castellón TD, Sieving KE (2006) An experimental test of matrix permeability and corridor use by an endemic understory bird. Conserv Biol 20(1):135–145

    Article  PubMed  Google Scholar 

  • Chao A, Shen TJ (2003) Program SPADE (Species prediction and diversity estimation). Program and user’s guide published at http://chao.stat.nthu.edu.tw. Accessed 20 Jan 2013

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  PubMed  CAS  Google Scholar 

  • Chapuis MP, Popple JA, Simpson SJ, Estoup A, Martin JF, Steinbauer M, Mcculloch L, Sword GA (2008) Eight polymorphic microsatellite loci for the Australian plague locust, Chortoicetes terminifera. Mol Ecol Resour 8:1414–1416

    Article  PubMed  CAS  Google Scholar 

  • Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100(1):106–113

    Article  PubMed  CAS  Google Scholar 

  • Cockerham CC, Weir BS (1993) Estimation of gene flow from F-statistics. Evolution 47(3):855–863

    Article  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Dakin EE, Avise JC (2004) Microsatellite null alleles in parentages analysis. Heredity 93:504–509

    Article  PubMed  CAS  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Sci 39:1–38

    Google Scholar 

  • Detzel P (1998) Die Heuschrecken Baden-Württembergs, 1st edn. Eugen Ulmer Verlag, Stuttgart

    Google Scholar 

  • Elsner O (1994) Geplantes Naturschutzgebiet “Südlicher Hassbergtrauf” im Landkreis Hassberge. Institut für Vegetationskunde und Landschaftsökologie, Zeckern

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinforma Online 1:47–50

    CAS  Google Scholar 

  • Fahrig L, Merriam G (1994) Conservation of fragmented populations. Conserv Biol 8(1):50–59

    Article  Google Scholar 

  • Foll M, Gaggiotti OE (2008) A genome scan method to identify selected loci appropriate for both dominant and codominant markers: a bayesian perspective. Genetics 180:977–993

    Article  PubMed  Google Scholar 

  • Foll M, Fischer MC, Heckel G, Excoffier L (2010) Estimating population structure from AFLP amplification intensity. Mol Ecol 19:4638–4647

    Article  PubMed  CAS  Google Scholar 

  • Funk WC, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S, Allendorf FW (2005) Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol 14:483–496

    Article  PubMed  CAS  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  PubMed  CAS  Google Scholar 

  • Gerber AS, Templeton AR (1996) Population sizes and within-deme movement of Trimerotropis saxatilis (Acrididae), a grasshopper with a fragmented distribution. Oecologia 105:343–350

    Article  Google Scholar 

  • Gottschalk E (1997) Habitatbindung und Populationsökologie der Westlichen Beißschrecke (Platycleis albopunctata, Goeze 1778) (Orthoptera: Tettigoniidae). Doctoral Thesis, Julius-Maximilians-Universität, Würzburg, Eine Grundlage für den Schutz der Art

    Google Scholar 

  • Goudet J (2001) Fstat, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 20 Jan 2013

  • Guillot G (2008) Inference of structure in subdivided populations at low levels of genetic dierentiation. The correlated allele frequencies model revisited. Bioinformatics 24:2222–2228

    Article  PubMed  CAS  Google Scholar 

  • Guillot G, Estoup A, Mortier F, Cosson JF (2005a) A spatial statistical model for landscape genetics. Genetics 170(3):1261–1280

    Article  PubMed  CAS  Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005b) Geneland: a computer package for landscape genetics. Mol Ecol Notes 5(3):712–715

    Article  CAS  Google Scholar 

  • Guillot G, Santos F, Estoup A (2008) Analysing georeferenced population genetics data with Geneland: a new algorithm to deal with null alleles and a friendly graphical user interface. Bioinformatics 24(11):1406–1407

    Article  PubMed  CAS  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics 48:361–372

    Article  PubMed  CAS  Google Scholar 

  • Haddad NM (1999) Corridor and distance effects on interpatch movements: a landscape experiment with butterflies. Ecol Appl 9(2):612–622

    Article  Google Scholar 

  • Hanski I, Thomas CD (1994) Metapopulation dynamics and conservation: a spatially explicit model applied to butterflies. Biol Conserv Biol 68(2):167–180

    Article  Google Scholar 

  • Hein S, Gombert J, Hovestadt T, Poethke HJ (2003) Movement patterns of the bush cricket Platycleis albopunctata in different types of habitat: matrix is not always matrix. Ecol Entomol 28(4):432–438

    Article  Google Scholar 

  • Heller R, Siegismund R (2009) Relationship between three measures of genetic differentiation GST, DEST and G’ST: how wrong have we been? Mol Ecol 18(10):2080–2083

    Article  PubMed  CAS  Google Scholar 

  • Hochkirch A, Damerau M (2009) Rapid range expansion of a wing-dimorphic bush-cricket after the 2003 climatic anomaly. Biol J Linn Soc Lond 97(1):118–127

    Article  Google Scholar 

  • Holst KT (1986) The Saltatoria (bush crickets, crickets and grasshoppers) of Northern Europe, vol 16. Scandinavian Science Press, Leiden, Fauna Entomologica Scandinavica

    Google Scholar 

  • Holzhauer SIJ, Wolff K (2005) Polymorphic microsatellite loci in the bush-cricket Metrioptera roeselii. Mol Ecol Notes 5(3):502–503

    Article  CAS  Google Scholar 

  • Holzhauer SIJ, Ekschmitt K, Sander AC, Dauber J, Wolters V (2006) Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeselii. Landsc Ecol 21(6):891–899

    Article  Google Scholar 

  • Holzhauer SIJ, Wolff K, Wolters V (2009) Changes in land use and habitat availability affect the population genetic structure of Metrioptera roeselii (Orthoptera: Tettigoniidae). J Insect Conserv 13(5):543–552

    Article  Google Scholar 

  • Ingrisch S, Köhler G (1998) Die Heuschrecken Mitteleuropas, 1st edn. Westarp Wissenschaften-Verlagsgesellschaft GmbH, Magdeburg

    Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17(18):4015–4026

    Article  PubMed  Google Scholar 

  • Jost L (2009) D vs. GST: response to Heller and Siegismund,(2009) and Ryman and Leimar (2009). Mol Ecol 18(10):2088–2091

    Article  Google Scholar 

  • Jost L, Chao A (2010) http://network.nature.com/groups/popgen/forum/topics/4220. Accessed 20 Jan 2013

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7(12):1225–1241

    Article  Google Scholar 

  • Keller I, Nentwig W, Largiadèr CR (2004) Recent habitat fragmentation due to roads can lead to significant genetic differentiation in an abundant flightless ground beetle. Mol Ecol 13:2983–2994

    Article  PubMed  CAS  Google Scholar 

  • Keyghobadi N, Roland J, Strobeck C (1999) Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae). Mol Ecol 8:1481–1495

    Article  PubMed  Google Scholar 

  • Keyghobadi N, Roland J, Strobeck C (2005) Genetic differentiation and gene flow among populations of the alpine butterfly, Parnassius smintheus, vary with landscape connectivity. Mol Ecol 14:1897–1909

    Article  PubMed  CAS  Google Scholar 

  • Kindvall O (1993) Biologi och hotbild för en rand population av grön hedvårtbitare (Biology and threat situation of a fringe population of the bush cricket Metrioptera bicolor in Sweden). Entomol Tidskr 114(3):65–74

    Google Scholar 

  • Kindvall O (1995) The impact of extreme weather on habitat preference and survival in a metapopulation of the bush-cricket Metrioptera bicolor in Sweden. Biol Conserv 73:51–58

    Article  Google Scholar 

  • Kindvall O (1999) Dispersal in a metapopulation of the bush cricket, Metrioptera bicolor (Orthoptera: Tettigoniidae). J Anim Ecol 68(1):172–185

    Article  Google Scholar 

  • Kindvall O, Ahlén I (1992) Geometrical factors and metapopulation dynamics of the bush cricket Metrioptera bicolor Philippi (Orthopthera: Tettigoniidae). Conserv Biol 6(4):520–530

    Article  Google Scholar 

  • Koenig WD, Van Vuren D, Hooge PN (1996) Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol Evol 11(12):514–517

    Article  PubMed  CAS  Google Scholar 

  • Lange R, Durka W, Holzhauer SIJ, Wolters V, Diekötter T (2010) Differential threshold effects of habitat fragmentation on gene flow in two widespread species of bush crickets. Mol Ecol 19(22):4936–4948

    Article  PubMed  Google Scholar 

  • Leberg P (1992) Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution 46(2):477–494

    Article  Google Scholar 

  • Leidner AK, Haddad NM (2010) Natural, not urban, barriers define population structure for a coastal endemic butterfly. Conserv Gen 11:2311–2320

    Article  Google Scholar 

  • Mader HJ (1984) Animal habitat isolation by roads and agricultural fields. Biol Conserv 29:81–96

    Article  Google Scholar 

  • Marsh DM, Page RB, Hanlon TJ, Corritone R, Little EC, Seifert DE, Cabe PR (2008) Effects of roads on patterns of genetic differentiation in red-backed salamanders, Plethodon cinereus. Conserv Gen 9:603–613

    Article  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11(1):5–18

    Article  PubMed  Google Scholar 

  • Nadig A (1988) Massenvermehrung und Makropterie bei Bicolorana bicolor, Chorthippus parallelus und Arcyptera fusca (Insecta, Orthoptera). Atti Accad Roveretana Agiata 26:135–140

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1978) Molecular Evolutionary Genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29(1):1–10

    Article  Google Scholar 

  • Neigel JE (1997) A comparison of different alternative strategies for estimating gene flow from genetic markers. Annu Rev Ecol Syst 28:105–128

    Article  Google Scholar 

  • Orsini L, Corander J, Alasentie A, Hanski I (2008) Genetic spatial structure in a butterfly metapopulation correlates better with past than present demographic structure. Mol Ecol 17:2629–2642

    Article  PubMed  CAS  Google Scholar 

  • Paetkau D, Strobeck C (1995) The molecular basis and evolutionary history of a microsatellite null allele in bears. Mol Ecol 4(4):519–520

    Article  PubMed  CAS  Google Scholar 

  • Paetkau D, Waits LP, Clarkson PL, Craighead L, Strobeck C (1997) An empirical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae) populations. Genetics 147:1943–1957

    PubMed  CAS  Google Scholar 

  • Pemberton J-M, Slate J, Bancroft D-R, Barrett J-A (1995) Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol Ecol 4(2):249–252

    Article  PubMed  CAS  Google Scholar 

  • Peterson MA, Denno RF (1997) The influence of intraspecific variation in dispersal strategies on the genetic structure of planthopper populations. Evolution 51(4):1189–1206

    Article  Google Scholar 

  • Prugnolle F, De Meeus T (2002) Inferring sex-biased dispersal from population genetic tools: a review. Heredity 88:161–165

    Article  PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86(3):248–249

    Google Scholar 

  • Rice W (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Ricketts T-H (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158(1):87–99

    Article  PubMed  CAS  Google Scholar 

  • Ridley SPD, Pollinger JP, Sauvajot RM, York EC, Bromley C, Fuller TK, Wayne RK (2006) A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol Ecol 15(7):1733–1741

    Article  Google Scholar 

  • Ries L, Debinski DM (2001) Butterfly responses to habitat edges in the highly fragmented prairies of Central Iowa. J Anim Ecol 70(5):840–852

    Article  Google Scholar 

  • Roderick GK (1996) Geographic structure of insect populations: gene flow, phylogeography, and their uses. Annu Rev Entomol 41:325–352

    Article  PubMed  CAS  Google Scholar 

  • Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253

    Article  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete reimplementation of the genepop software for windows and linux. Mol Ecol 8:103–106

    Article  Google Scholar 

  • Ryman N, Leimar O (2009) GST is still a useful measure of genetic differentiation-a comment on Jost’s D. Mol Ecol 18(10):2084–2087

    Article  PubMed  Google Scholar 

  • Schlumprecht H, Waeber G (2003) Heuschrecken in Bayern, 1st edn. Eugen Ulmer Verlag, Stuttgart

    Google Scholar 

  • Simmons AD, Thomas CD (2004) Changes in dispersal during species’ range expansions. Am Nat 164(3):378–395

    Article  PubMed  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47(1):264–279

    Article  Google Scholar 

  • Slatkin M (1994) Gene flow and population structure. In: Real LA (ed) Ecological genetics. Princeton University Press, New Jersey, pp 3–17

    Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    PubMed  CAS  Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe OL, Thomas CD (1996) Open corridors appear to facilitate dispersal by ringlet butterflies (Aphantopus hyperantus) between woodland clearings. Conserv Biol 10(5):1359–1365

    Article  Google Scholar 

  • Thomas CD (2000) Dispersal and extinction in fragmented landscapes. Proceedings of the Royal Society of London (B) 267:139–145

    Article  CAS  Google Scholar 

  • Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG, Musche M, Conradt L (2001) Ecological and evolutionary processes at expanding range margins. Nature 411:577–581

    Article  PubMed  CAS  Google Scholar 

  • Ulagaraj SM (1975) Mole crickets: ecology, behavior, and dispersal flight (Orthoptera: Gryllotalpidae: Scapteriscus). Environ Entomol 4(2):265–273

    Google Scholar 

  • Van Dyck H, Baguette M (2005) Dispersal behaviour in fragmented landscapes: routine or special movements? Basic Appl Ecol 6(6):535–545

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538

    Article  Google Scholar 

  • Van Oosterhout C, Weetman D, Hutchinson WF (2006) Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol Ecol Notes 6(1):255–256

    Article  Google Scholar 

  • Voisin JF (1982) Sur les formes macroptères de Metrioptera bicolor es de M. roeseli (Orthoptera Tettigoniidae Decticinae). L’Entomologiste 42:111–112

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: FST81/(4Nm + 1). Heredity 82:117–125

    Article  PubMed  Google Scholar 

  • Wood BC, Pullin AS (2002) Persistence of species in a fragmented urban landscape: the importance of dispersal ability and habitat availability for grassland butterflies. Biodivers Conserv 11:1451–1468

    Article  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28(2):114–138

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Thomas Hovestadt for helpful comments on the sampling design, Georg Popp and Beatrice Schuster for helping with the collection of genetic samples, Karin Möller for assistance in the laboratory, and Marina Meixner and Thomas Hovestadt for proofreading our manuscript. We also thank the government of Lower Franconia for the permission to work in the nature reserve ‘Hohe Wann’. Ina Heidinger was funded by the ‘Deutsche Bundesstiftung Umwelt’ (DBU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina Monika Margret Heidinger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heidinger, I.M.M., Hein, S., Feldhaar, H. et al. The genetic structure of populations of Metrioptera bicolor in a spatially structured landscape: effects of dispersal barriers and geographic distance. Conserv Genet 14, 299–311 (2013). https://doi.org/10.1007/s10592-013-0449-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-013-0449-z

Keywords

Navigation