Conservation Genetics

, Volume 14, Issue 2, pp 299–311 | Cite as

The genetic structure of populations of Metrioptera bicolor in a spatially structured landscape: effects of dispersal barriers and geographic distance

  • Ina Monika Margret Heidinger
  • Silke Hein
  • Heike Feldhaar
  • Hans-Joachim Poethke
Research Article


The stability and long-term survival of animal populations in fragmented landscapes largely depends on the colonisation of habitat patches and the exchange of individuals between patches. The degree of inter-patch dispersal, in turn, depends on the dispersal abilities of species and the landscape structure (i.e. the nature of the landscape matrix and habitat distribution). Here, we investigated the genetic structure of populations of Metrioptera bicolor, a wing-dimorphic bush cricket, in a spatially structured landscape with patches of suitable habitat distributed within a diverse matrix of different habitat types. Using six microsatellite markers, we assessed the effects of geographic distance and different matrix types on the extent of genetic differentiation among 24 sampling sites. We found that forest and a river running through the study area both impede inter-patch dispersal. The presence of these two matrix types was positively correlated with the extent of genetic differentiation between sites. In addition, we found a significant positive correlation between pairwise genetic and geographic distances for a subsample of sites which were separated only by arable land or settlements. For the complete data set, this correlation could not be found. This is most probably because the adverse effect of forest and river on gene flow dominates the effect of geographic distance in our limited set of patches. Our analyses clearly emphasize the differential resistance of different habitat types on dispersal and the importance of a more detailed view on matrix “quality” in metapopulation studies.


Dispersal barriers Isolation by distance Metrioptera bicolor Orthoptera Population genetic structure 



We thank Thomas Hovestadt for helpful comments on the sampling design, Georg Popp and Beatrice Schuster for helping with the collection of genetic samples, Karin Möller for assistance in the laboratory, and Marina Meixner and Thomas Hovestadt for proofreading our manuscript. We also thank the government of Lower Franconia for the permission to work in the nature reserve ‘Hohe Wann’. Ina Heidinger was funded by the ‘Deutsche Bundesstiftung Umwelt’ (DBU).

Supplementary material

10592_2013_449_MOESM1_ESM.pdf (29 kb)
Supplementary material 1 (PDF 28 kb)


  1. Andrén H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71(3):355–366CrossRefGoogle Scholar
  2. Antolin M, Savage L, Eisen R (2006) Landscape features influence genetic structure of black-tailed prairie dogs (Cynomys ludovicianus). Landsc Ecol 211:867–875CrossRefGoogle Scholar
  3. Baker PS, Gewecke M, Cooter RJ (1981) The natural flight of migratory locust, Locusta migratoria L.: III. wing-beat frequency, flight speed and attitude. J Comp Physiol A 141(2):233–237CrossRefGoogle Scholar
  4. Berggren A, Carlson A, Kindvall O (2001) The effect of landscape composition on colonization success, growth rate and dispersal in introduced bush-crickets Metrioptera roeselii. J Anim Ecol 70:663–670CrossRefGoogle Scholar
  5. Berggren A, Birath B, Kindvall O (2002) Effect of corridors and habitat edges on dispersal behaviour, movement rates, and movement angles in Roesel’s bush-cricket (Metrioptera roeselii). Conserv Biol 16(6):1562–1569CrossRefGoogle Scholar
  6. Biswas SR, Wagner HH (2012) Landscape contrast: a solution to hidden assumptions in the metacommunity concept? Landsc Ecol 27(5):621–631CrossRefGoogle Scholar
  7. Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74(1):21–45PubMedCrossRefGoogle Scholar
  8. Bohonak AJ (2002) IBD (isolation by distance): a program for analyses of isolation by distance. J Hered 93:153–154PubMedCrossRefGoogle Scholar
  9. Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58(22):445–449CrossRefGoogle Scholar
  10. Castellón TD, Sieving KE (2006) An experimental test of matrix permeability and corridor use by an endemic understory bird. Conserv Biol 20(1):135–145PubMedCrossRefGoogle Scholar
  11. Chao A, Shen TJ (2003) Program SPADE (Species prediction and diversity estimation). Program and user’s guide published at Accessed 20 Jan 2013
  12. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631PubMedCrossRefGoogle Scholar
  13. Chapuis MP, Popple JA, Simpson SJ, Estoup A, Martin JF, Steinbauer M, Mcculloch L, Sword GA (2008) Eight polymorphic microsatellite loci for the Australian plague locust, Chortoicetes terminifera. Mol Ecol Resour 8:1414–1416PubMedCrossRefGoogle Scholar
  14. Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100(1):106–113PubMedCrossRefGoogle Scholar
  15. Cockerham CC, Weir BS (1993) Estimation of gene flow from F-statistics. Evolution 47(3):855–863CrossRefGoogle Scholar
  16. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  17. Dakin EE, Avise JC (2004) Microsatellite null alleles in parentages analysis. Heredity 93:504–509PubMedCrossRefGoogle Scholar
  18. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Sci 39:1–38Google Scholar
  19. Detzel P (1998) Die Heuschrecken Baden-Württembergs, 1st edn. Eugen Ulmer Verlag, StuttgartGoogle Scholar
  20. Elsner O (1994) Geplantes Naturschutzgebiet “Südlicher Hassbergtrauf” im Landkreis Hassberge. Institut für Vegetationskunde und Landschaftsökologie, ZeckernGoogle Scholar
  21. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinforma Online 1:47–50Google Scholar
  22. Fahrig L, Merriam G (1994) Conservation of fragmented populations. Conserv Biol 8(1):50–59CrossRefGoogle Scholar
  23. Foll M, Gaggiotti OE (2008) A genome scan method to identify selected loci appropriate for both dominant and codominant markers: a bayesian perspective. Genetics 180:977–993PubMedCrossRefGoogle Scholar
  24. Foll M, Fischer MC, Heckel G, Excoffier L (2010) Estimating population structure from AFLP amplification intensity. Mol Ecol 19:4638–4647PubMedCrossRefGoogle Scholar
  25. Funk WC, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S, Allendorf FW (2005) Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol 14:483–496PubMedCrossRefGoogle Scholar
  26. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318PubMedCrossRefGoogle Scholar
  27. Gerber AS, Templeton AR (1996) Population sizes and within-deme movement of Trimerotropis saxatilis (Acrididae), a grasshopper with a fragmented distribution. Oecologia 105:343–350CrossRefGoogle Scholar
  28. Gottschalk E (1997) Habitatbindung und Populationsökologie der Westlichen Beißschrecke (Platycleis albopunctata, Goeze 1778) (Orthoptera: Tettigoniidae). Doctoral Thesis, Julius-Maximilians-Universität, Würzburg, Eine Grundlage für den Schutz der ArtGoogle Scholar
  29. Goudet J (2001) Fstat, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from Accessed 20 Jan 2013
  30. Guillot G (2008) Inference of structure in subdivided populations at low levels of genetic dierentiation. The correlated allele frequencies model revisited. Bioinformatics 24:2222–2228PubMedCrossRefGoogle Scholar
  31. Guillot G, Estoup A, Mortier F, Cosson JF (2005a) A spatial statistical model for landscape genetics. Genetics 170(3):1261–1280PubMedCrossRefGoogle Scholar
  32. Guillot G, Mortier F, Estoup A (2005b) Geneland: a computer package for landscape genetics. Mol Ecol Notes 5(3):712–715CrossRefGoogle Scholar
  33. Guillot G, Santos F, Estoup A (2008) Analysing georeferenced population genetics data with Geneland: a new algorithm to deal with null alleles and a friendly graphical user interface. Bioinformatics 24(11):1406–1407PubMedCrossRefGoogle Scholar
  34. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics 48:361–372PubMedCrossRefGoogle Scholar
  35. Haddad NM (1999) Corridor and distance effects on interpatch movements: a landscape experiment with butterflies. Ecol Appl 9(2):612–622CrossRefGoogle Scholar
  36. Hanski I, Thomas CD (1994) Metapopulation dynamics and conservation: a spatially explicit model applied to butterflies. Biol Conserv Biol 68(2):167–180CrossRefGoogle Scholar
  37. Hein S, Gombert J, Hovestadt T, Poethke HJ (2003) Movement patterns of the bush cricket Platycleis albopunctata in different types of habitat: matrix is not always matrix. Ecol Entomol 28(4):432–438CrossRefGoogle Scholar
  38. Heller R, Siegismund R (2009) Relationship between three measures of genetic differentiation GST, DEST and G’ST: how wrong have we been? Mol Ecol 18(10):2080–2083PubMedCrossRefGoogle Scholar
  39. Hochkirch A, Damerau M (2009) Rapid range expansion of a wing-dimorphic bush-cricket after the 2003 climatic anomaly. Biol J Linn Soc Lond 97(1):118–127CrossRefGoogle Scholar
  40. Holst KT (1986) The Saltatoria (bush crickets, crickets and grasshoppers) of Northern Europe, vol 16. Scandinavian Science Press, Leiden, Fauna Entomologica ScandinavicaGoogle Scholar
  41. Holzhauer SIJ, Wolff K (2005) Polymorphic microsatellite loci in the bush-cricket Metrioptera roeselii. Mol Ecol Notes 5(3):502–503CrossRefGoogle Scholar
  42. Holzhauer SIJ, Ekschmitt K, Sander AC, Dauber J, Wolters V (2006) Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeselii. Landsc Ecol 21(6):891–899CrossRefGoogle Scholar
  43. Holzhauer SIJ, Wolff K, Wolters V (2009) Changes in land use and habitat availability affect the population genetic structure of Metrioptera roeselii (Orthoptera: Tettigoniidae). J Insect Conserv 13(5):543–552CrossRefGoogle Scholar
  44. Ingrisch S, Köhler G (1998) Die Heuschrecken Mitteleuropas, 1st edn. Westarp Wissenschaften-Verlagsgesellschaft GmbH, MagdeburgGoogle Scholar
  45. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17(18):4015–4026PubMedCrossRefGoogle Scholar
  46. Jost L (2009) D vs. GST: response to Heller and Siegismund,(2009) and Ryman and Leimar (2009). Mol Ecol 18(10):2088–2091CrossRefGoogle Scholar
  47. Jost L, Chao A (2010) Accessed 20 Jan 2013
  48. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7(12):1225–1241CrossRefGoogle Scholar
  49. Keller I, Nentwig W, Largiadèr CR (2004) Recent habitat fragmentation due to roads can lead to significant genetic differentiation in an abundant flightless ground beetle. Mol Ecol 13:2983–2994PubMedCrossRefGoogle Scholar
  50. Keyghobadi N, Roland J, Strobeck C (1999) Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae). Mol Ecol 8:1481–1495PubMedCrossRefGoogle Scholar
  51. Keyghobadi N, Roland J, Strobeck C (2005) Genetic differentiation and gene flow among populations of the alpine butterfly, Parnassius smintheus, vary with landscape connectivity. Mol Ecol 14:1897–1909PubMedCrossRefGoogle Scholar
  52. Kindvall O (1993) Biologi och hotbild för en rand population av grön hedvårtbitare (Biology and threat situation of a fringe population of the bush cricket Metrioptera bicolor in Sweden). Entomol Tidskr 114(3):65–74Google Scholar
  53. Kindvall O (1995) The impact of extreme weather on habitat preference and survival in a metapopulation of the bush-cricket Metrioptera bicolor in Sweden. Biol Conserv 73:51–58CrossRefGoogle Scholar
  54. Kindvall O (1999) Dispersal in a metapopulation of the bush cricket, Metrioptera bicolor (Orthoptera: Tettigoniidae). J Anim Ecol 68(1):172–185CrossRefGoogle Scholar
  55. Kindvall O, Ahlén I (1992) Geometrical factors and metapopulation dynamics of the bush cricket Metrioptera bicolor Philippi (Orthopthera: Tettigoniidae). Conserv Biol 6(4):520–530CrossRefGoogle Scholar
  56. Koenig WD, Van Vuren D, Hooge PN (1996) Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol Evol 11(12):514–517PubMedCrossRefGoogle Scholar
  57. Lange R, Durka W, Holzhauer SIJ, Wolters V, Diekötter T (2010) Differential threshold effects of habitat fragmentation on gene flow in two widespread species of bush crickets. Mol Ecol 19(22):4936–4948PubMedCrossRefGoogle Scholar
  58. Leberg P (1992) Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution 46(2):477–494CrossRefGoogle Scholar
  59. Leidner AK, Haddad NM (2010) Natural, not urban, barriers define population structure for a coastal endemic butterfly. Conserv Gen 11:2311–2320CrossRefGoogle Scholar
  60. Mader HJ (1984) Animal habitat isolation by roads and agricultural fields. Biol Conserv 29:81–96CrossRefGoogle Scholar
  61. Marsh DM, Page RB, Hanlon TJ, Corritone R, Little EC, Seifert DE, Cabe PR (2008) Effects of roads on patterns of genetic differentiation in red-backed salamanders, Plethodon cinereus. Conserv Gen 9:603–613CrossRefGoogle Scholar
  62. Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11(1):5–18PubMedCrossRefGoogle Scholar
  63. Nadig A (1988) Massenvermehrung und Makropterie bei Bicolorana bicolor, Chorthippus parallelus und Arcyptera fusca (Insecta, Orthoptera). Atti Accad Roveretana Agiata 26:135–140Google Scholar
  64. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323PubMedCrossRefGoogle Scholar
  65. Nei M (1978) Molecular Evolutionary Genetics. Columbia University Press, New YorkGoogle Scholar
  66. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29(1):1–10CrossRefGoogle Scholar
  67. Neigel JE (1997) A comparison of different alternative strategies for estimating gene flow from genetic markers. Annu Rev Ecol Syst 28:105–128CrossRefGoogle Scholar
  68. Orsini L, Corander J, Alasentie A, Hanski I (2008) Genetic spatial structure in a butterfly metapopulation correlates better with past than present demographic structure. Mol Ecol 17:2629–2642PubMedCrossRefGoogle Scholar
  69. Paetkau D, Strobeck C (1995) The molecular basis and evolutionary history of a microsatellite null allele in bears. Mol Ecol 4(4):519–520PubMedCrossRefGoogle Scholar
  70. Paetkau D, Waits LP, Clarkson PL, Craighead L, Strobeck C (1997) An empirical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae) populations. Genetics 147:1943–1957PubMedGoogle Scholar
  71. Pemberton J-M, Slate J, Bancroft D-R, Barrett J-A (1995) Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol Ecol 4(2):249–252PubMedCrossRefGoogle Scholar
  72. Peterson MA, Denno RF (1997) The influence of intraspecific variation in dispersal strategies on the genetic structure of planthopper populations. Evolution 51(4):1189–1206CrossRefGoogle Scholar
  73. Prugnolle F, De Meeus T (2002) Inferring sex-biased dispersal from population genetic tools: a review. Heredity 88:161–165PubMedCrossRefGoogle Scholar
  74. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86(3):248–249Google Scholar
  75. Rice W (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  76. Ricketts T-H (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158(1):87–99PubMedCrossRefGoogle Scholar
  77. Ridley SPD, Pollinger JP, Sauvajot RM, York EC, Bromley C, Fuller TK, Wayne RK (2006) A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol Ecol 15(7):1733–1741CrossRefGoogle Scholar
  78. Ries L, Debinski DM (2001) Butterfly responses to habitat edges in the highly fragmented prairies of Central Iowa. J Anim Ecol 70(5):840–852CrossRefGoogle Scholar
  79. Roderick GK (1996) Geographic structure of insect populations: gene flow, phylogeography, and their uses. Annu Rev Entomol 41:325–352PubMedCrossRefGoogle Scholar
  80. Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253CrossRefGoogle Scholar
  81. Rousset F (2008) Genepop’007: a complete reimplementation of the genepop software for windows and linux. Mol Ecol 8:103–106CrossRefGoogle Scholar
  82. Ryman N, Leimar O (2009) GST is still a useful measure of genetic differentiation-a comment on Jost’s D. Mol Ecol 18(10):2084–2087PubMedCrossRefGoogle Scholar
  83. Schlumprecht H, Waeber G (2003) Heuschrecken in Bayern, 1st edn. Eugen Ulmer Verlag, StuttgartGoogle Scholar
  84. Simmons AD, Thomas CD (2004) Changes in dispersal during species’ range expansions. Am Nat 164(3):378–395PubMedCrossRefGoogle Scholar
  85. Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430CrossRefGoogle Scholar
  86. Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47(1):264–279CrossRefGoogle Scholar
  87. Slatkin M (1994) Gene flow and population structure. In: Real LA (ed) Ecological genetics. Princeton University Press, New Jersey, pp 3–17Google Scholar
  88. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462PubMedGoogle Scholar
  89. Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142PubMedCrossRefGoogle Scholar
  90. Sutcliffe OL, Thomas CD (1996) Open corridors appear to facilitate dispersal by ringlet butterflies (Aphantopus hyperantus) between woodland clearings. Conserv Biol 10(5):1359–1365CrossRefGoogle Scholar
  91. Thomas CD (2000) Dispersal and extinction in fragmented landscapes. Proceedings of the Royal Society of London (B) 267:139–145CrossRefGoogle Scholar
  92. Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG, Musche M, Conradt L (2001) Ecological and evolutionary processes at expanding range margins. Nature 411:577–581PubMedCrossRefGoogle Scholar
  93. Ulagaraj SM (1975) Mole crickets: ecology, behavior, and dispersal flight (Orthoptera: Gryllotalpidae: Scapteriscus). Environ Entomol 4(2):265–273Google Scholar
  94. Van Dyck H, Baguette M (2005) Dispersal behaviour in fragmented landscapes: routine or special movements? Basic Appl Ecol 6(6):535–545CrossRefGoogle Scholar
  95. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538CrossRefGoogle Scholar
  96. Van Oosterhout C, Weetman D, Hutchinson WF (2006) Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol Ecol Notes 6(1):255–256CrossRefGoogle Scholar
  97. Voisin JF (1982) Sur les formes macroptères de Metrioptera bicolor es de M. roeseli (Orthoptera Tettigoniidae Decticinae). L’Entomologiste 42:111–112Google Scholar
  98. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  99. Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: FST81/(4Nm + 1). Heredity 82:117–125PubMedCrossRefGoogle Scholar
  100. Wood BC, Pullin AS (2002) Persistence of species in a fragmented urban landscape: the importance of dispersal ability and habitat availability for grassland butterflies. Biodivers Conserv 11:1451–1468CrossRefGoogle Scholar
  101. Wright S (1943) Isolation by distance. Genetics 28(2):114–138PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ina Monika Margret Heidinger
    • 1
  • Silke Hein
    • 2
  • Heike Feldhaar
    • 3
  • Hans-Joachim Poethke
    • 4
  1. 1.LLH, Bee Institute KirchhainKirchhainGermany
  2. 2.AGRIDEALindauSwitzerland
  3. 3.Department of Animal Ecology IUniversity of BayreuthBayreuthGermany
  4. 4.Field Station FabrikschleichachUniversity of WuerzburgRauhenebrachGermany

Personalised recommendations