Skip to main content

Advertisement

Log in

Landscape genetics and limiting factors

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Population connectivity is mediated by the movement of organisms or propagules through landscapes. However, little is known about how variation in the pattern of landscape mosaics affects the detectability of landscape genetic relationships. The goal of this paper is to explore the impacts of limiting factors on landscape genetic processes using simulation modeling. We used spatially explicit, individual-based simulation modeling to quantify the effects of habitat area, fragmentation and the contrast in resistance between habitat and non-habitat on the apparent strength and statistical detectability of landscape genetic relationships. We found that landscape genetic effects are often not detectable when habitat is highly connected. In such situations landscape structure does not limit gene flow. We also found that contrast in resistance values between habitat and non-habitat interacts with habitat extensiveness and fragmentation to affect detectability of landscape genetic relationships. Thus, the influence of landscape features critical to providing connectivity may not be detectable if gene flow is not limited by spatial patterns or resistance contrast of these features. We developed regression equations that reliably predict whether or not isolation by resistance will be detected independently of isolation by distance as a function of habitat fragmentation and contrast in resistance between habitat and non-habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Balkenhol N, Gugerli F, Cushman SA, Waits LP, Coulon A, Arntzen JW, Holderegger R, Wagner HH et al (2009) Identifying future research needs in landscape genetics: Where to from here? Landsc Ecol 24:455–463

    Article  Google Scholar 

  • Balloux F (2001) EASYPOP (Version 1.7): a computer program for population genetics simulations. J Hered 92:301–302

    Article  PubMed  CAS  Google Scholar 

  • Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic micorsatellites. Nature 368:455–457

    Article  PubMed  CAS  Google Scholar 

  • Broquet T, Johnson CA, Petit E, Thompson I, Burel F, Fryxell JM (2006) Dispersal and genetic structure in the American marten, Martes americana. Mol Ecol 15:1689–1697

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449

    Article  Google Scholar 

  • Bruggeman DJ, Wiegand T, Fernandez N (2010) The relative effects of habitat loss and fragmentation on population genetic structure. Mol Ecol 19:3679–3691

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Castellano S, Balletto E (2002) Is the partial mantel test inadequate? Evolution 56:1871–1873

    PubMed  Google Scholar 

  • Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240

    Article  Google Scholar 

  • Cushman SA, Landguth EL (2010) Spurious correlations and inference in landscape genetics. Mol Ecol 19:3592–3602

    Article  PubMed  Google Scholar 

  • Cushman SA, Lewis J (2010) Movement behavior explains genetic differentiation in American black bear. Landsc Ecol 25:1613–1625

    Article  Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene-flow in complex landscapes: testing multiple models with causal modeling. Am Nat 168:486–499

    Article  PubMed  Google Scholar 

  • Cushman SA, McGarigal K, Neel M (2008) Parsimony in landscape metrics: strength, universality, and consistency. Ecol Ind 8:691–703

    Article  Google Scholar 

  • Cushman SA, Compton BW, McGarigal K (2010) Habitat fragmentation effects depend on complex interactions between population size and dispersal ability: modeling influences of roads, agriculture and residential development across a range of life-history characteristics. In: Cushman SA, Huettman F (eds) Spatial complexity, informatics and wildlife conservation. Springer, Tokyo, pp 369–387

    Chapter  Google Scholar 

  • Cushman SA, Raphael MG, Ruggiero LF, Shirk AS, Wasserman TN, O’Doherty EC (2011) Limiting factors and landscape connectivity: American marten in the Rocky Mountains. Landsc Ecol 26:1137–1149

    Article  Google Scholar 

  • Cushman SA, Landguth EL, Shirk AJ (2012) Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landsc Ecol 27:369–380

    Article  Google Scholar 

  • Epperson BK, McRae B, Scribner K, Cushman SA, Rosenberg MS, Fortin M-J, James PMA, Murphy M, Manel S, Legendre P, Dale MRT (2010) Utility of computer simulations in landscape genetics. Mol Ecol 19:3540–3564

    Article  Google Scholar 

  • ESRI (1999–2008) Environmental System Research Institute, Redlands

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Syst 34:487–515

    Article  Google Scholar 

  • Fahrig L, Merriam G (1985) Habitat patch connectivity and population survival. Ecology 66:1762–1768

    Article  Google Scholar 

  • Fahrig L, Paloheimo J (1988) Effect of spatial arrangement of habitat patches on local population size. Ecology 69:468–475

    Article  Google Scholar 

  • Fahrig L, Pedlar JH, Pope SE, Taylor PD, Wegner JF (1995) Effect of road traffic on amphibian density. Biol Conserv 73:177–182

    Article  Google Scholar 

  • Flather CH, Bevers M (2002) Patchy reaction-diffusion and population abundance: the relative importance of habitat amount and arrangement. Am Nat 159:40–56

    Article  PubMed  Google Scholar 

  • Gardner RH (1999) RULE: a program for the generation of random maps and the analysis of spatial patterns. In: Klopatek JM, Gardner RH (eds) Landscape ecological analysis: issues and applications. Springer, New York, pp 280–303

    Chapter  Google Scholar 

  • Gardner RH, O’Neill RV (1991) Pattern, process and predictability: the use of neutral models for landscape analysis. In: Turner MG, Gardner RH (eds) Quantitative methods in landscape ecology. Springer, New York, pp 289–308

    Chapter  Google Scholar 

  • Gardner RH, Milne BT, Turner MG, O’Neill RV (1987) Neutral models for the analysis of broad scale landscape pattern. Landsc Ecol 1(19):28

    Google Scholar 

  • Gardner RH, O’Neill RV, Turner MG, Dale VH (1989) Quantifiying scale-dependent effects of animal movement with simple percolation models. Landsc Ecol 3:217–227

    Article  Google Scholar 

  • Gibbs JP (1998) Amphibian movements in response to forest edges, roads, and streambeds in southern New England. J Wildl Manag 62:584–589

    Article  Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19

    Google Scholar 

  • Hanski I (2005) The shrinking world: ecological consequences of habitat loss. Excellence in ecology book 14. International Ecology Institute, Oldendorf/Luhe

  • Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404:755–758

    Article  PubMed  CAS  Google Scholar 

  • Harrell FE Jr (2001) Regression modelling strategies: with applications to linear models. Regression Analyses and Survival Models. Springer, New York

    Google Scholar 

  • Harrison S (1991) Local extinction in a metapopulation context: an empirical evaluation. Biol J Linn Soc 42:73–88

    Article  Google Scholar 

  • Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58:199–207

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S (1989) Applied logistic regression. Wiley, New York

    Google Scholar 

  • Jaquiéry J, Broquet T, Hirzel AH, Yearsley J, Perrin N (2011) Inferring landscape effects on dispersal from genetic distances: How far can we go? Mol Ecol 20:692–705

    Article  PubMed  Google Scholar 

  • Koen EL, Bowman J, Mills SC, Wilson PJ (2012) Landscape resistance and American marten gene flow. Landsc Ecol 27:29–43

    Article  Google Scholar 

  • Kyle CJ, Strobeck C (2003) Genetic homogeneity of Canadian mainland marten populations underscores the distinctiveness of Newfoundland pin martens (Martes americana atrata). Can J Zool 81:57–66

    Article  Google Scholar 

  • Kyle CJ, Davis CS, Strobeck C (2000) Microsatellite analysis of North American pine marten (Martes americana) populations from the Yukon and northwest territories. Can J Zool 78:1150–1157

    Google Scholar 

  • Landguth EL, Cushman SA (2010) CDPOP: an individual-based, cost-distance spatial population genetics model. Mol Ecol Resour 10:156–161

    Article  PubMed  CAS  Google Scholar 

  • Landguth EL, Cushman SA, Luikart G, Murphy MA, Schwartz MK, McKelvey KS (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191

    Article  Google Scholar 

  • Lee-Yaw JA, Davidson A, McRae BH, Green DM (2009) Do landscape processes predict phylogeographic patterns in the wood frog? Mol Ecol 18:1863–1874

    Article  PubMed  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: Trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Legendre P, Fortin M-J (2010) Comparison of the mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Resour 10:831–844

    Article  PubMed  Google Scholar 

  • Legendre P, Troussellier M (1988) Aquatic heterotrophic bacteria: modeling in the presence of spatial autocorrelation. Limnol Oceanogr 33:1055–1067

    Article  Google Scholar 

  • Lindenmayer DB, Fischer J (2007) Tackling the habitat fragmentation pancheton. Trends Ecol Evol 22:111–166

    Article  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Manel S, Berthoud F, Bellemain E et al (2007) A new individual-based spatial approach for identifying genetic discontinuities in natural populations. Mol Ecol Resour 16:2031–2043

    Article  CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: Spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst

    Google Scholar 

  • McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci USA 104:19885–19890

    Article  PubMed  CAS  Google Scholar 

  • Murphy MA, Evans JS, Storfer A (2010) Quantifying bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91:252–261

    Article  PubMed  Google Scholar 

  • Neel MC, Cushman SA, McGarigal K (2004) Behavior and stability of landscape metrics across controlled gradients of landscape structure. Landsc Ecol 19:435–455

    Article  Google Scholar 

  • Pearson SM, Gardner RH (1997) Neutral models: useful tools for understanding landscape pattern. In: Bissonette JA (ed) Wildlife and landscape ecology. Springer, New York, pp 215–230

    Chapter  Google Scholar 

  • Pérez-Espona S, Pérez-Barbería FJ, McLeod JE, Jiggins CD, Gordon IJ, Pemberton JM (2008) Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Mol Ecol 17:981–996

    Article  PubMed  Google Scholar 

  • Raufaste N, Rousset F (2001) Are partial mantel tests adequate? Evolution 55:1703–1705

    PubMed  CAS  Google Scholar 

  • Reh W, Seitz A (1990) The influence of land use on the genetic structure of populations of the common frog Rana temporaria. Biol Conserv 54:239–249

    Article  Google Scholar 

  • Revilla E, Wiegand T (2008) Individual movement behavior, matrix heterogeneity, and the dynamics of spatially structured populations. Proc Natl Acad Sci USA 105:19120–19125

    Article  PubMed  CAS  Google Scholar 

  • Schumaker NH (1996) Using landscape indices to predict habitat connectivity. Ecology 77:1210–1225

    Article  Google Scholar 

  • Segelbacher G, Cushman SA, Epperson BK, Fortin M-J, Francois O, Hardy OJ, Holderegger R, Manel S (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet 11:375–385

    Article  Google Scholar 

  • Shirk, AJ, Cushman SA, Landguth EL (2012) Simulating pattern-process relationships to validate landscape genetic models. Int J Ecol 2012:8 (Article ID 539109)

  • Shirk A, Wallin DO, Cushman SA, Rice RC, Warheit C (2010) Inferring landscape effects on gene flow: a new multi-scale model selection framework. Mol Ecol 19: 3603–1619

    Google Scholar 

  • Short Bull RA, Cushman SA, Mace R, Chilton T, Kendall KC. Landguth EL, Schwartz MK, McKelvey KS, Allendorf FW, Luikart G (2011) Why replication is important in landscape genetics: American black bear in the Rocky Mountains. Mol Ecol 20:1092–1107

    Google Scholar 

  • Small MP, Stone KD, Cook JA (2003) American marten (Martes americana) in the Pacific Northwest: population differentiation across a landscape fragmented in time and space. Mol Ecol 12:89–103

    Article  PubMed  CAS  Google Scholar 

  • Spear SF, Storfer A (2008) Landscape genetic structure of coastal tailed frogs (Aschaphus truei) in protected vs. managed forests. Mol Ecol 17:4642–4656

    Article  PubMed  Google Scholar 

  • Spear SF, Peterson CR, Matocq MD, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. r foundation for statistical computing, Vienna. http://www.R-project.org. ISBN 3-900051-07-0

  • Wasserman TN, Cushman SA, Schwartz MK, Wallin DO (2010) Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landsc Ecol 25:1601–1612

    Article  Google Scholar 

  • Wasserman TN, Cushman SA, Shirk AS, Landguth EL, Littell JS (2012a) Simulating the effects of climate change on population connectivity of American marten (Mates americana) in the northern Rocky Mountains, USA. Landsc Ecol 26:211–225

    Article  Google Scholar 

  • Wasserman TN, Cushman SA, Littell JS, Shirk AJ, Landguth EL (2012b) Population connectivity and genetic diversity of American marten (Martes americana) in the United States northern Rocky Mountains in a climate change context. Conserv Genet. doi:10.1007/s10592-012-0336-z

  • Wiegand T, Moloney KA, Naves J, Knauer F (1999) Finding the missing link between landscape structure and population dynamics: a spatially explicit perspective. Am Nat 154:605–627

    Article  PubMed  Google Scholar 

  • Wiegand T, Revilla E, Moloney ME (2005) Effects of habitat loss and fragmentation on population dynamics. Conserv Biol 19:108–121

    Article  Google Scholar 

  • With KA (1994) Using fractal analysis to identify how species perceive landscape structure. Landsc Ecol 9:25–36

    Article  Google Scholar 

  • With KA (1997) The application of neutral landscape models in conservation biology. Conserv Biol 11:1069–1080

    Article  Google Scholar 

  • With KA, Crist TO (1995) Critical thresholds in species’ responses to landscape structure. Ecology 76:2446–2459

    Article  Google Scholar 

  • With KA, King AW (1999) Extinction thresholds for species in fractal landscapes. Conserv Biol 13:314–326

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel A. Cushman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cushman, S.A., Shirk, A.J. & Landguth, E.L. Landscape genetics and limiting factors. Conserv Genet 14, 263–274 (2013). https://doi.org/10.1007/s10592-012-0396-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-012-0396-0

Keywords

Navigation