Advertisement

Conservation Genetics

, Volume 13, Issue 4, pp 1085–1093 | Cite as

Planning for optimal conservation of geographical genetic variability within species

  • José Alexandre Felizola Diniz-Filho
  • Dayane Borges Melo
  • Guilherme de Oliveira
  • Rosane Garcia Collevatti
  • Thannya Nascimento Soares
  • João Carlos Nabout
  • Jacqueline de Souza Lima
  • Ricardo Dobrovolski
  • Lázaro José Chaves
  • Ronaldo Veloso Naves
  • Rafael Dias Loyola
  • Mariana Pires de Campos Telles
Research Article

Abstract

Systematic Conservation Planning (SCP) involves a series of steps that should be accomplished to determine the most cost-effective way to invest in conservation action. Although SCP has been usually applied at the species level (or hierarchically higher), it is possible to use alleles from molecular analyses at the population level as basic units for analyses. Here we demonstrate how SCP procedures can be used to establish optimum strategies for in situ and ex situ conservation of a single species, using Dipteryx alata (a Fabaceae tree species widely distributed and endemics to Brazilian Cerrado) as a case study. Data for the analyses consisted in 52 alleles from eight microsatellite loci coded for a total of 644 individual trees sampled in 25 local populations throughout species’ geographic range. We found optimal solutions in which seven local populations are the smallest set of local populations of D. alata that should be conserved to represent the known genetic diversity. Combining these several solutions allowed estimating the relative importance of the local populations for conserving all known alleles, taking into account the current land-use patterns in the region. A germplasm collection for this species already exists, so we also used SCP approach to identify the smallest number of populations that should be further collected in the field to complement the existing collection, showing that only four local populations should be sampled for optimizing the species ex situ representation. The initial application of the SCP methods to genetic data showed here can be a useful starting point for methodological and conceptual improvements and may be a first important step towards a comprehensive and balanced quantitative definition of conservation goals, shedding light to new possibilities for in situ and ex situ designs within species.

Keywords

Complementarity Conservation planning Optimization Cerrado Hotspot Dipteryx alata 

Notes

Acknowledgments

We thank two anonymous reviewers for suggestions that improved initial version of this manuscript. Our research program integrating macroecology and molecular ecology of plants and the DTI fellowship to G.O. has been continuously supported by several grants and fellowships to the research network GENPAC (Geographical Genetics and Regional Planning for natural resources in Brazilian Cerrado) from CNPq/MCT/CAPES (projects # 564717/2010-0 and 563624/2010-8) and by the “Núcleo de Excelência em Genética e Conservação de Espécies do Cerrado”—GECER (PRONEX/FAPEG/CNPq CP 07-2009). Field work has been supported by Systema Naturae Consultoria Ambiental LTDA. Work by J.A.F.D.-F., M.P.C.T., L.J.C., R.G.C. and R.D.L. have been continuously supported by productivity fellowships from CNPq, and work by D.B.M. and J.S.S. by fellowships by CAPES.

References

  1. Abbitt RJF, Scott JM, Wilcove DS (2000) The geography of vulnerability: incorporating species geography and human development patterns into conservation planning. Biol Conserv 96:169–175. doi: 10.1016/S0006-3207(00)00064-1 CrossRefGoogle Scholar
  2. Araújo MB (2003) The coincidence of people and biodiversity in Europe. Glob Ecol Biogeogr 12:5–12. doi: 10.1046/j.1466-822X.2003.00314.x CrossRefGoogle Scholar
  3. Balmford A, Moore JL, Brooks T, Burgess N, Hansen LA, Williams P, Rahbek C (2001) Conservation conflicts across Africa. Science 291:2616–2619. doi: 10.1126/science.291.5513.2616 PubMedCrossRefGoogle Scholar
  4. Brooks T, da Fonseca GAB, Rodrigues ASL (2004) Species, data, and conservation planning. Conserv Biol 18:1682–1688. doi: 10.1111/j.1523-1739.2004.00457.x CrossRefGoogle Scholar
  5. Brooks TM, Mittermeier RA, Fonseca GAB, Da Gerlach J, Hoffmann M, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues ASL (2006) Global biodiversity conservation priorities. Science 313:58–61. doi: 10.1126/science.1127609 PubMedCrossRefGoogle Scholar
  6. Cabeza M, Moilanen A (2001) Design of reserve networks and the persistence of biodiversity. Trends Ecol Evol 16:242–248. doi: 10.1016/S0169-5347(01)02125-5 PubMedCrossRefGoogle Scholar
  7. Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268. doi: 10.1146/annurev.es.18.110187.001321 CrossRefGoogle Scholar
  8. Collevatti RG, Lima JS, Soares TN, Telles MPDC (2010) Spatial genetic structure and life history traits in Cerrado tree species: inferences for conservation. Nat Conservacao 8:54–59. doi: 10.4322/natcon.00801008 CrossRefGoogle Scholar
  9. Diniz-Filho JAF, Bini LM (2011) Geographical patterns in biodiversity: towards an integration of concepts and methods from genes to species diversity. Nat Conservacao 9(2):179–187. doi: 10.4322/natcon.2011.023 CrossRefGoogle Scholar
  10. Diniz-Filho JAF, Telles MPC (2002) Spatial autocorrelation analysis and the identification of operational units for conservation in continuous populations. Conserv Biol 16:924–935. doi: 10.1046/j.1523-1739.2002.00295.x CrossRefGoogle Scholar
  11. Diniz-Filho JAF, Telles MPC (2006) Optimization procedures for establishing reserve networks for biodiversity conservation taking into account population genetic structure. Genet Mol Biol 29:207–214CrossRefGoogle Scholar
  12. Diniz-Filho JAF, Bini LM, Pinto MP, Rangel TFLVB, Carvalho P, Vieira SL, Bastos RP (2007a) Conservation biogeography of Anurans in Brazilian Cerrado. Biodivers Conserv 16:997–1008. doi: 10.1007/s10531-006-9010-4 CrossRefGoogle Scholar
  13. Diniz-Filho JAF, Nabout JC, Bini LM, Soares TN, Telles MPC, DeMarco P, Collevatti RG (2007b) Niche modeling and landscape genetics of Caryocar brasiliense (“Pequi” tree: Caryocaraceae) in Brazilian Cerrado: an integrative approach for evaluating central-peripheral population patterns. Tree Genet Genomes 5:617–627. doi: 10.1007/s11295-009-0214-0 CrossRefGoogle Scholar
  14. Epperson BK (2003) Geographical genetics. Princeton University Press, PrincetonGoogle Scholar
  15. Felfili JM, Ribeiro JF, Borges Filho HC, Vale AT (2004) Potencial econômico da biodiversidade do Cerrado: estádio atual e possibilidades de manejo sustentável dos recursos da flora. In: Aguiar LMS, Camargo AJA (eds) Cerrado: ecologia e caracterização. Embrapa Informação Tecnológica, Brasília, pp 17–40Google Scholar
  16. Frankham R (2003) Genetics and conservation biology. C R Biol 326:22–29. doi: 10.1016/S1631-0691(03)00023-4 CrossRefGoogle Scholar
  17. Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752. doi: 10.1046/j.1365-294X.2001.t01-1-01411.x PubMedGoogle Scholar
  18. Goudet J (2002) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). Available from http://www.unil.ch/izea/softwares/fstat.html
  19. Grelle CEV, Lorini ML, Pinto MP (2010) Reserve selection based on vegetation in the Brazilian Atlantic Forest. Nat Conservacao 8:46–53. doi: 10.4322/natcon.00801007 CrossRefGoogle Scholar
  20. Kirkpatrick JB (1983) An iterative method for establishing priorities for the selection of nature reserves: an example from Tasmania. Biol Conserv 25:127–134. doi: 10.1016/0006-3207(83)90056-3 CrossRefGoogle Scholar
  21. Lemes P, Faleiro FAMV, Tessarolo G, Loyola RD (2011) Refinando dados espaciais para conservação da biodiversidade. Nat Conservacao 9:240–243. doi: 10.4322/natcon.2011.032 CrossRefGoogle Scholar
  22. Loyola RD, Oliveira-Santos LGR, Almeida-Neto M, Nogueira DM, Kubota U, Diniz-Filho JAF, Lewinsohn TM (2009) Integrating economic costs and biological traits into global conservation priorities for carnivores. Plos One 4(8):e6807. doi: 10.1371/journal.pone.0006807 PubMedCrossRefGoogle Scholar
  23. Loyola RD, Eizirik E, Machado RB, Aguiar LMS, Brito D, Grelle CEV (2011) Toward innovative integrated approaches for the conservation of mammals. Nat Conservaçao 9:1–6. doi: 10.4322/natcon.2011.001 CrossRefGoogle Scholar
  24. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253. doi: 10.1038/35012251 PubMedCrossRefGoogle Scholar
  25. Margules CR, Sarkar S (2007) Systematic conservation planning. Cambridge University Press, CambridgeGoogle Scholar
  26. McCarthy MA, Thompson CJ, Possingham HP (2005) Theory for designing nature reserves for single species. Am Nat 165:250–257. doi: 0003-0147/2005/16502-4046 PubMedCrossRefGoogle Scholar
  27. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kents J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi: 10.1038/35002501 PubMedCrossRefGoogle Scholar
  28. Neel MC, Cummings MP (2003) Effectiveness of conservation targets in capturing genetic diversity. Conserv Biol 17:219–229. doi: 10.1046/j.1523-1739.2003.01352.x CrossRefGoogle Scholar
  29. Possingham H, Ball I, Andelman S (2000) Mathematical methods for identifying representative reserve networks. In: Ferson S, Burgman M (eds) Quantitative methods for conservation biology. Springer, New York, pp 291–305CrossRefGoogle Scholar
  30. Pressey RL (2004) Conservation planning and biodiversity: assembling the best data for the job. Conserv Biol 18:1677–1681. doi: 10.1111/j.1523-1739.2004.00434.x CrossRefGoogle Scholar
  31. Sarkar S, Illoldi-Rangel P (2010) Systematic conservation planning: an updated protocol. Nat Conservacao 8:19–26. doi: 10.4322/natcon.00801003 CrossRefGoogle Scholar
  32. Segelbacher G, Cushman SA, Epperson BK, Fortin M-J, Francois O, Hardy OJ, Holderegger R, Taberlet P, Waits LP, Manel S (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet 11:375–385. doi: 10.1007/s10592-009-0044-5 CrossRefGoogle Scholar
  33. Soares TN, Chaves LJ, Telles MPD, Diniz-Filho JAF, Resende LV (2008) Spatial distribution of intrapopulational genetic variability in Dipteryx alata. Pesqui Agropecu Bras 43:1151–1158CrossRefGoogle Scholar
  34. Soares TN, Melo DB, Resende LV, Vianello RP, Chaves LJ, Collevatti RG, Telles MPC (2012) Development of microsatellite markers for the Neotropical tree species Dipteryx alata (Fabaceae). Am J Bot 99:e72–e73PubMedCrossRefGoogle Scholar
  35. Telles MPC, Diniz-Filho JAF, Bastos RP, Soares TN, Guimaraes LDH, Lima LP (2007) Landscape genetics of Physalaemus cuvieri in Brazilian Cerrado: correspondence between population structure and levels of human occupation and habitat loss. Biol Conserv 139:37–46. doi: 10.1016/j.biocon.2007.06.003 CrossRefGoogle Scholar
  36. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. doi: 10.2307/2408641 CrossRefGoogle Scholar
  37. Williams JC, Revelle CS, Levin SA (2004) Using mathematical optimization models to design nature reserves. Front Ecol Environ 2:98–105. doi: 10.1890/1540-9295(2004)002[0098:UMOMTD]2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • José Alexandre Felizola Diniz-Filho
    • 1
  • Dayane Borges Melo
    • 2
  • Guilherme de Oliveira
    • 3
  • Rosane Garcia Collevatti
    • 4
  • Thannya Nascimento Soares
    • 4
  • João Carlos Nabout
    • 5
  • Jacqueline de Souza Lima
    • 6
  • Ricardo Dobrovolski
    • 6
  • Lázaro José Chaves
    • 7
  • Ronaldo Veloso Naves
    • 7
  • Rafael Dias Loyola
    • 1
  • Mariana Pires de Campos Telles
    • 4
  1. 1.Departamento de EcologiaICB, Universidade Federal de GoiásGoiâniaBrazil
  2. 2.Programa de Pós-Graduação em Agronomia, Escola de Agronomia e Engenharia de AlimentosUniversidade Federal de GoiásGoiâniaBrazil
  3. 3.Programa DTIUniversidade Federal de GoiásJataíBrazil
  4. 4.Departamento de Biologia GeralICB, Universidade Federal de GoiásGoiâniaBrazil
  5. 5.Unidade de Ciências Exatas e da TerraUniversidade Estadual de GoiásAnápolisBrazil
  6. 6.Programa de Pos-Graduação em Ecologia & EvoluçãoICB, Universidade Federal de GoiásGoiâniaBrazil
  7. 7.Escola de Agronomia e Engenharia de AlimentosUniversidade Federal de GoiásGoiâniaBrazil

Personalised recommendations