Skip to main content
Log in

Mating at summer sites: indications from parentage analysis and roosting behaviour of Daubenton’s bats (Myotis daubentonii)

  • Short Communication
  • Published:
Conservation Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 23 June 2012

Abstract

This study reports on evidence for successful mating of Myotis daubentonii at summer sites established by paternity analysis and behavioural observations. Parentage in individuals with high site fidelity was verified. Associations of parents in the same roosts before September and repeated fatherhood of a single resident male support the hypothesis of regular mating activities at summer sites. Based on the assumption that successful mating of many European bat species occurs at summer sites after the young are fledged, anthropogenic habitat changes should steer clear of the seasonal activity period to prevent a reduced reproduction rate of local bat populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Agosta SJ (2002) Habitat use, diet and roost selection by the big brown bat (Eptesicus fuscus) in North America: a case for conserving an abundant species. Mammal Rev 32(3):179–198

    Article  Google Scholar 

  • Boyce MS (1992) Population viability analysis. Annu Rev Ecol Syst 23(1):481–497. doi:10.1146/annurev.es.23.110192.002405

    Article  Google Scholar 

  • Brunet-Rossinni AK, Wilkinson GS (2009) Methods for age estimation and the study of senescence in bats. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats, 2nd edn. The Johns Hopkins University Press, Baltimore, pp 315–328

    Google Scholar 

  • Burland TM, Barratt EM, Racey PA (1998) Isolation and characterization of microsatellite loci in the brown long-eared bat, Plecotus auritus, and cross-species amplification within the family Vespertilionidae. Mol Ecol 7(1):136–138

    CAS  Google Scholar 

  • Burland TM, Barratt EM, Nichols RA, Racey PA (2001) Mating patterns, relatedness and the basis of natal philopatry in the brown long-eared bat Plecotus auritus. Mol Ecol 10(5):1309–1321

    Article  PubMed  CAS  Google Scholar 

  • Castella V, Ruedi M (2000) Characterization of highly variable microsatellite loci in the bat Myotis myotis (Chiroptera: Vespertilionidae). Mol Ecol 9(7):1000–1002

    Article  PubMed  CAS  Google Scholar 

  • Cryan PM, Veilleux JP (2007) Migration and use of autumn, winter, and spring roosts by forest bats. In: Lacki MJ, Hayes JP, Kurta A (eds) Bats in forests: conservation and management. Johns Hopkins University Press, Baltimore, pp 153–175

    Google Scholar 

  • Encarnação JA (2012) Spatiotemporal pattern of local sexual segregation in a tree-dwelling temperate bat Myotis daubentonii. J Ethol. doi:10.1007/s10164-011-0323-8

    Google Scholar 

  • Encarnação JA, Dietz M, Kierdorf U (2004) Reproductive condition and activity pattern of male Daubenton’s bats (Myotis daubentonii) in the summer habitat. Mamm Biol 69(3):163–172

    Google Scholar 

  • Encarnação JA, Kierdorf U, Wolters V (2007) Do mating roosts of Daubenton’s bats (Myotis daubentonii) exist at summer sites? Myotis 43:31–39

    Google Scholar 

  • Furmankiewicz J, Altringham J (2007) Genetic structure in a swarming brown long-eared bat (Plecotus auritus) population: evidence for mating at swarming sites. Conserv Genet 8(4):913–923

    Article  CAS  Google Scholar 

  • Gerell-Lundberg K, Gerell R (1994) The mating behaviour of the pipistrelle and Nathusius’ pipistrelle (Chiroptera)—a comparison. Folia Zool 43:315–324

    Google Scholar 

  • Grimmberger E, Hackethal H, Urbancyk Z (1987) Beitrag zum Paarungsverhalten der Wasserfledermaus, Myotis daubentonii (Kuhl, 1819) im Winterquartier. Zeitschrift für Säugetierkunde 52:133–140

    Google Scholar 

  • Hecker KH, Roux KH (1996) High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR. Biotechniques 20(3):478–485

    PubMed  CAS  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program Cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 16(5):1099–1106

    Article  PubMed  Google Scholar 

  • Kerth G, Morf L (2004) Behavioural and genetic data suggest that Bechstein’s bats predominantly mate outside the breeding habitat. Ethology 110(12):987–999

    Article  Google Scholar 

  • Kerth G, Safi K, König B (2002) Mean colony relatedness is a poor predictor of colony structure and female philopatry in the communally breeding Bechstein’s bat (Myotis bechsteinii). Behav Ecol Sociobiol 52(3):203–210

    Article  Google Scholar 

  • Kerth G, Kiefer A, Trappmann C, Weishaar M (2003) High gene diversity at swarming sites suggest hot spots for gene flow in the endangered Bechstein’s bat. Conserv Genet 4(4):491–499

    Article  CAS  Google Scholar 

  • Krebs CJ (1999) Ecological methodology, 2nd edn. Addison-Wesley Educational Publishers, Menlo Park

    Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7(5):639–655

    Article  PubMed  CAS  Google Scholar 

  • McCracken GF, Wilkinson GS (2000) Bat mating systems. In: Crichton EG, Krutzsch PH (eds) Reproductive biology of bats. Academic Press, New York, pp 321–362

    Chapter  Google Scholar 

  • McDonald DB (2000) Demographic analyses of mating systems. In: Apollonio M, Festa-Bianchet A, Mainardi D (eds) Vertebrate mating systems. World Scientific Publishing, London, pp 80–105

    Google Scholar 

  • Parsons KN, Jones G (2003) Dispersion and habitat use by Myotis daubentonii and Myotis nattereri during the swarming season: implications for conservation. Anim Conserv 6(4):283–290

    Article  Google Scholar 

  • Petri B, Pääbo S, Von Haeseler A, Tautz D (1997) Paternity assessment and population subdivision in a natural population of the larger mouse-eared bat Myotis myotis. Mol Ecol 6(3):235–242

    Article  PubMed  CAS  Google Scholar 

  • Racey PA (1974) The reproductive cycle in male Noctule bats Nyctalus noctula. J Reprod Fertil 41(1):169–182. doi:10.1530/jrf.0.0410169

    Article  PubMed  CAS  Google Scholar 

  • Racey PA (2003) Conservation ecology of bats. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, London, pp 680–744

    Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9(5):615–629

    Article  PubMed  Google Scholar 

  • Senior P, Butlin RK, Altringham JD (2005) Sex and segregation in temperate bats. Proc R Soc B 272(1580):2467–2473

    Article  PubMed  Google Scholar 

  • Stephens PA, Sutherland WJ (2000) Vertebrate mating systems, rarity and conservation. In: Apollonio M, Festa-Bianchet A, Mainardi D (eds) Vertebrate mating systems. World Scientific Publishing, London, pp 186–213

    Google Scholar 

  • Zahn A, Dippel B (1997) Male roosting habits and mating behaviour of Myotis myotis. J Zool 243(4):659–674

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Encarnação.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Encarnação, J.A. Mating at summer sites: indications from parentage analysis and roosting behaviour of Daubenton’s bats (Myotis daubentonii). Conserv Genet 13, 1161–1165 (2012). https://doi.org/10.1007/s10592-012-0343-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-012-0343-0

Keywords

Navigation