Conservation Genetics

, Volume 13, Issue 4, pp 1161–1165 | Cite as

Mating at summer sites: indications from parentage analysis and roosting behaviour of Daubenton’s bats (Myotis daubentonii)

  • Jorge A. Encarnação
Short Communication


This study reports on evidence for successful mating of Myotis daubentonii at summer sites established by paternity analysis and behavioural observations. Parentage in individuals with high site fidelity was verified. Associations of parents in the same roosts before September and repeated fatherhood of a single resident male support the hypothesis of regular mating activities at summer sites. Based on the assumption that successful mating of many European bat species occurs at summer sites after the young are fledged, anthropogenic habitat changes should steer clear of the seasonal activity period to prevent a reduced reproduction rate of local bat populations.


Capture-recapture analysis Microsatellite Paternity Site fidelity Vespertilionidae 


  1. Agosta SJ (2002) Habitat use, diet and roost selection by the big brown bat (Eptesicus fuscus) in North America: a case for conserving an abundant species. Mammal Rev 32(3):179–198CrossRefGoogle Scholar
  2. Boyce MS (1992) Population viability analysis. Annu Rev Ecol Syst 23(1):481–497. doi: 10.1146/ CrossRefGoogle Scholar
  3. Brunet-Rossinni AK, Wilkinson GS (2009) Methods for age estimation and the study of senescence in bats. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats, 2nd edn. The Johns Hopkins University Press, Baltimore, pp 315–328Google Scholar
  4. Burland TM, Barratt EM, Racey PA (1998) Isolation and characterization of microsatellite loci in the brown long-eared bat, Plecotus auritus, and cross-species amplification within the family Vespertilionidae. Mol Ecol 7(1):136–138Google Scholar
  5. Burland TM, Barratt EM, Nichols RA, Racey PA (2001) Mating patterns, relatedness and the basis of natal philopatry in the brown long-eared bat Plecotus auritus. Mol Ecol 10(5):1309–1321PubMedCrossRefGoogle Scholar
  6. Castella V, Ruedi M (2000) Characterization of highly variable microsatellite loci in the bat Myotis myotis (Chiroptera: Vespertilionidae). Mol Ecol 9(7):1000–1002PubMedCrossRefGoogle Scholar
  7. Cryan PM, Veilleux JP (2007) Migration and use of autumn, winter, and spring roosts by forest bats. In: Lacki MJ, Hayes JP, Kurta A (eds) Bats in forests: conservation and management. Johns Hopkins University Press, Baltimore, pp 153–175Google Scholar
  8. Encarnação JA (2012) Spatiotemporal pattern of local sexual segregation in a tree-dwelling temperate bat Myotis daubentonii. J Ethol. doi: 10.1007/s10164-011-0323-8 Google Scholar
  9. Encarnação JA, Dietz M, Kierdorf U (2004) Reproductive condition and activity pattern of male Daubenton’s bats (Myotis daubentonii) in the summer habitat. Mamm Biol 69(3):163–172Google Scholar
  10. Encarnação JA, Kierdorf U, Wolters V (2007) Do mating roosts of Daubenton’s bats (Myotis daubentonii) exist at summer sites? Myotis 43:31–39Google Scholar
  11. Furmankiewicz J, Altringham J (2007) Genetic structure in a swarming brown long-eared bat (Plecotus auritus) population: evidence for mating at swarming sites. Conserv Genet 8(4):913–923CrossRefGoogle Scholar
  12. Gerell-Lundberg K, Gerell R (1994) The mating behaviour of the pipistrelle and Nathusius’ pipistrelle (Chiroptera)—a comparison. Folia Zool 43:315–324Google Scholar
  13. Grimmberger E, Hackethal H, Urbancyk Z (1987) Beitrag zum Paarungsverhalten der Wasserfledermaus, Myotis daubentonii (Kuhl, 1819) im Winterquartier. Zeitschrift für Säugetierkunde 52:133–140Google Scholar
  14. Hecker KH, Roux KH (1996) High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR. Biotechniques 20(3):478–485PubMedGoogle Scholar
  15. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program Cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 16(5):1099–1106PubMedCrossRefGoogle Scholar
  16. Kerth G, Morf L (2004) Behavioural and genetic data suggest that Bechstein’s bats predominantly mate outside the breeding habitat. Ethology 110(12):987–999CrossRefGoogle Scholar
  17. Kerth G, Safi K, König B (2002) Mean colony relatedness is a poor predictor of colony structure and female philopatry in the communally breeding Bechstein’s bat (Myotis bechsteinii). Behav Ecol Sociobiol 52(3):203–210CrossRefGoogle Scholar
  18. Kerth G, Kiefer A, Trappmann C, Weishaar M (2003) High gene diversity at swarming sites suggest hot spots for gene flow in the endangered Bechstein’s bat. Conserv Genet 4(4):491–499CrossRefGoogle Scholar
  19. Krebs CJ (1999) Ecological methodology, 2nd edn. Addison-Wesley Educational Publishers, Menlo ParkGoogle Scholar
  20. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7(5):639–655PubMedCrossRefGoogle Scholar
  21. McCracken GF, Wilkinson GS (2000) Bat mating systems. In: Crichton EG, Krutzsch PH (eds) Reproductive biology of bats. Academic Press, New York, pp 321–362CrossRefGoogle Scholar
  22. McDonald DB (2000) Demographic analyses of mating systems. In: Apollonio M, Festa-Bianchet A, Mainardi D (eds) Vertebrate mating systems. World Scientific Publishing, London, pp 80–105Google Scholar
  23. Parsons KN, Jones G (2003) Dispersion and habitat use by Myotis daubentonii and Myotis nattereri during the swarming season: implications for conservation. Anim Conserv 6(4):283–290CrossRefGoogle Scholar
  24. Petri B, Pääbo S, Von Haeseler A, Tautz D (1997) Paternity assessment and population subdivision in a natural population of the larger mouse-eared bat Myotis myotis. Mol Ecol 6(3):235–242PubMedCrossRefGoogle Scholar
  25. Racey PA (1974) The reproductive cycle in male Noctule bats Nyctalus noctula. J Reprod Fertil 41(1):169–182. doi: 10.1530/jrf.0.0410169 PubMedCrossRefGoogle Scholar
  26. Racey PA (2003) Conservation ecology of bats. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, London, pp 680–744Google Scholar
  27. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9(5):615–629PubMedCrossRefGoogle Scholar
  28. Senior P, Butlin RK, Altringham JD (2005) Sex and segregation in temperate bats. Proc R Soc B 272(1580):2467–2473PubMedCrossRefGoogle Scholar
  29. Stephens PA, Sutherland WJ (2000) Vertebrate mating systems, rarity and conservation. In: Apollonio M, Festa-Bianchet A, Mainardi D (eds) Vertebrate mating systems. World Scientific Publishing, London, pp 186–213Google Scholar
  30. Zahn A, Dippel B (1997) Male roosting habits and mating behaviour of Myotis myotis. J Zool 243(4):659–674CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Mammalian Ecology Group, Department of Animal Ecology and SystematicsJustus Liebig University of GiessenGiessenGermany

Personalised recommendations