Skip to main content

Advertisement

Log in

Habitat connectivity, more than species’ biology, influences genetic differentiation in a habitat specialist, the short-eared rock-wallaby (Petrogale brachyotis)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

It is difficult to assess the relative influence of anthropogenic processes (e.g., habitat fragmentation) versus species’ biology on the level of genetic differentiation among populations when species are restricted in their distribution to fragmented habitats. This issue is particularly problematic for Australian rock-wallabies (Petrogale sp.), where most previous studies have examined threatened species in anthropogenically fragmented habitats. The short-eared rock-wallaby (Petrogale brachyotis) provides an opportunity to assess natural population structure and gene flow in relatively continuous habitat across north-western Australia. This region has reported widespread declines in small-to-medium sized mammals, making data regarding the influence of habitat connectivity on genetic diversity important for broad-scale management. Using non-invasive and standard methods, 12 microsatellite loci and mitochondrial DNA were compared to examine patterns of population structure and dispersal among populations of P. brachyotis in the Kimberley, Western Australia. Low genetic differentiation was detected between populations separated by up to 67 km. The inferred genetic connectivity of these populations suggests that in suitable habitat P. brachyotis can potentially disperse far greater distances than previously reported for rock-wallabies in more fragmented habitat. Like other Petrogale species male-biased dispersal was detected. These findings suggest that a complete understanding of population biology may not be achieved solely by the study of fragmented populations in disturbed environments and that management strategies may need to draw on studies of populations (or related species) in undisturbed areas of contiguous habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amos W, Balmford A (2001) When does conservation genetics matter? Heredity 87:257–265

    Article  PubMed  CAS  Google Scholar 

  • Banks SC, Ward SJ, Lindenmayer B, Finlayson GR, Lawson SJ, Taylor AC (2005) The effects of habitat fragmentation on the social kin structure and mating system of the agile antechinus, Antechinus agilis. Mol Ecol 14:1789–1801

    Article  PubMed  CAS  Google Scholar 

  • Bee CA, Close RL (1993) Mitochondrial DNA analysis of introgression between adjacent taxa of rock wallabies, Petrogale species (Marsupialia: Macropodidae). Genet Res 61:21–37

    Article  CAS  Google Scholar 

  • Braithwaite RW, Muller WJ (1997) Rainfall, groundwater and refuges: predicting extinctions of Australian tropical mammal species. Aust J Ecol 22:57–67

    Article  Google Scholar 

  • Broquet T, Petit E (2004) Quantifying genotyping errors in noninvasive population genetics. Mol Ecol 13:3601–3608

    Article  PubMed  CAS  Google Scholar 

  • Brouat C, Sennedot F, Audiot P, Leblois R, Rasplus J-Y (2003) Fine-scale genetic structure of two carabid species with contrasted levels of habitat specialization. Mol Ecol 12:1731–1745

    Article  PubMed  CAS  Google Scholar 

  • Browning TL, Taggart DA, Rummery C, Close RL, Eldridge MDB (2001) Multifaceted genetic analysis of the “Critically Endangered” brush-tailed rock-wallaby Petrogale penicillata in Victoria, Australia: implications for management. Conserv Genet 2:145–156

    Article  CAS  Google Scholar 

  • Cabe PR, Page RB, Hanlon TJ, Aldrich ME, Connors L, Marsh DM (2007) Fine-scale population differentiation and gene flow in a terrestrial salamander (Plethodon cinereus) living in continuous habitat. Heredity 98:53–60

    Article  PubMed  CAS  Google Scholar 

  • Cornuet J-M, Piry S, Luikart G, Estoup A, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153:1989–2000

    PubMed  CAS  Google Scholar 

  • Department of Environment and Climate Change (2008) Recovery plan for the brush-tailed rock-wallaby (Petrogale penicillata). NSW Department of Environment and Climate Change, Sydney

  • Department of Environment and Heritage (2006) Bounceback Progress Report. SA Department of Environment and Heritage, Adelaide

  • Department of Environment and Resource Management (2010) National recovery plan for the Proserpine rock-wallaby Petrogale persephone. Report to Department of Sustainability, Environment, Water, Population and Communities, Canberra, Brisbane

  • Eldridge MDB (2008) Rock-wallabies: Petrogale. In: Van Dyck S, Strahan R (eds) The mammals of Australia, 3rd edn. New Holland, Sydney, pp 361–362

    Google Scholar 

  • Eldridge MDB, King JM, Loupis AK, Spencer PBS, Taylor AC, Pope LC, Hall GP (1999) Unprecedented low levels of genetic variation and inbreeding depression in an island population of the black-footed rock-wallaby. Conserv Biol 13(3):531–541

    Article  Google Scholar 

  • Eldridge MDB, Kinnear JE, Onus ML (2001) Source population of dispersing rock-wallabies (Petrogale lateralis) identified by assignment tests on multilocus genotypic data. Mol Ecol 10:2867–2876

    PubMed  CAS  Google Scholar 

  • Eldridge MDB, Kinnear JE, Zenger KR, McKenzie LM, Spencer PBS (2004a) Genetic diversity in remnant mainland and “pristine” island populations of three endemic Australian macropodids (Marsupialia): Macropus eugenii, Lagorchestes hirsutus and Petrogale lateralis. Conserv Genet 5:325–338

    Article  CAS  Google Scholar 

  • Eldridge MDB, Rummery C, Bray C, Zenger KR, Browning TL, Close RL (2004b) Genetic analysis of a population crash in brush-tailed rock-wallabies (Petrogale penicillata) from Jenolan Caves, south-eastern Australia. Wildl Res 31:229–240

    Article  Google Scholar 

  • Eldridge MDB, Piggott MP, Hazlitt SL (2010) Population genetic studies of the Macropodoidea: a review. In: Coulson G, Eldridge M (eds) Macropods: the biology of kangaroos, wallabies and rat-kangaroos. CSIRO Publishing, Collingswood, pp 35–52

    Google Scholar 

  • Eldridge MDB, Potter S, Cooper SJB (2012) Biogeographic barriers in north-western Australia: an overview and standardisation of nomenclature. Aust J Zool 59:270–272

    Google Scholar 

  • Eliot I, Finlayson CM, Waterman P (1999) Predicted climate change, sea-level rise and wetland management in the Australian wet-dry tropics. Wetl Ecol Manag 7:63–81

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fischer JF, Lindenmayer DB, Barry S, Flowers E (2005) Lizard distribution patterns in the Tumut fragmentation “natural experiment” in south-eastern Australia. Biol Conserv 123(3):301–315

    Article  Google Scholar 

  • Fitzsimons J, Legge S, Traill B, Woinarski J (2010) Into oblivion? The disappearing native mammals of northern Australia. The Nature Conservancy, Melbourne

  • Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–327

    Article  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA, McInnes KH (2004) A primer of conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Fumagalli L, Pope LC, Taberlet P, Moritz C (1997) Versatile primers for the amplification of the mitochondrial DNA control region in marsupials. Mol Ecol 6:1199–1201

    Article  PubMed  CAS  Google Scholar 

  • Gilpin M, Hanski I (1991) Metapopulation dynamics: empirical and theoretical investigations. Academic Press, San Diego

    Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Harris LD (1984) The fragmented forest: island biogeography theory and preservation of biotic diversity. University of Chicago Press, Chicago

    Google Scholar 

  • Hazlitt SL, Eldridge MDB, Goldizen AW (2004) Fine-scale spatial genetic correlation analyses reveal strong female philopatry within a brush-tailed rock-wallaby colony in southeast Queensland. Mol Ecol 13:3621–3632

    Article  PubMed  CAS  Google Scholar 

  • Hazlitt SL, Goldizen AW, Eldridge MDB (2006a) Significant patterns of population genetic structure and limited gene flow in a threatened macropodid marsupial despite continuous habitat in southeast Queensland, Australia. Conserv Genet 7(5):675–689

    Article  CAS  Google Scholar 

  • Hazlitt SL, Sigg DP, Eldridge MDB, Goldizen AW (2006b) Restricted mating dispersal and strong breeding group structure in a mid-sized marsupial mammal (Petrogale penicillata). Mol Ecol 15:2997–3007

    Article  PubMed  CAS  Google Scholar 

  • Hazlitt SL, Eldridge MDB, Goldizen AW (2010) Strong matrilineal structuring in the brush-tailed rock-wallaby confirmed by spatial patterns of mitochondrial DNA. In: Coulson G, Eldridge M (eds) Macropods: the biology of kangaroos, wallabies and rat-kangaroos. CSIRO publishing, Collingswood, pp 87–95

    Google Scholar 

  • Hedrick PW (2000) Genetics of populations. Jones and Bartlett Publishers, Sudbury

    Google Scholar 

  • Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2005) Bayesian analysis of molecular evolution using MrBayes. In: Nielsen R (ed) Statistical methods in molecular evolution. Springer, New York, pp 183–232

    Chapter  Google Scholar 

  • Jarman PJ, Bayne P (1997) Behavioural ecology of Petrogale penicillata in relation to conservation. Aust Mammal 19:219–228

    Google Scholar 

  • Jones Lennon M, Taggart DA, Temple-Smith PD, Eldridge MDB (2011) The impact of isolation and bottlenecks on genetic diversity in the Pearson Island population of the black-footed rock-wallaby (Petrogale lateralis pearsoni; Marsupialia: Macropodidae). Aust Mammal 33:152–161

    Article  Google Scholar 

  • Kimura M (1981) Estimation of evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci USA 78(1):454–458

    Article  PubMed  CAS  Google Scholar 

  • Kraaijeveld-Smit FJL, Lindenmayer DB, Taylor AC, MacGregor C, Wertheim B (2007) Comparative genetic structure reflects underlying life histories of three sympatric small mammal species in continuous forest of south-eastern Australia. Oikos 116:1819–1830

    Article  Google Scholar 

  • Lacy RC (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv Biol 1:143–158

    Article  Google Scholar 

  • Lancaster ML, Taylor AC, Cooper SJB, Carthew SM (2011) Limited ecological connectivity of an arboreal marsupial across a forest/plantation landscape despite apparent resilience to fragmentation. Mol Ecol 20:2258–2271

    Article  PubMed  Google Scholar 

  • Langella O (1999) Populations 1.2.32. Accessed at: http://bioinformatics.org/

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Lindenmayer DB, Fischer JF (2006) Landscape change and habitat fragmentation: an ecological and conservation synthesis. Island Press, Washington

    Google Scholar 

  • Macqueen PE, Nicholls JA, Hazlitt SL, Goldizen AW (2008) Gene flow among native bush rat, Rattus fuscipes (Rodentia: Muridae), populations in the fragmented subtropical forests of south-east Queensland. Aust Ecol 33:585–593

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Maxwell S, Burbidge AA, Morris K (1996) The 1996 action plan for Australian marsupials and monotremes. Wildlife Australia, Canberra

    Google Scholar 

  • McKenzie NL, Burbidge AA (2002) Australian mammal audit. A report to the National Land and Water Resources Audit, Canberra

  • Meyer CFJ, Kalko EKV, Kerth G (2009) Small-scale fragmentation effects on local genetic diversity in two Phyllostomid bats with different dispersal abilities in Panama. Biotropica 41:95–102

    Article  Google Scholar 

  • Miller MP (2005) Alleles in space: computer software for the joint analysis of interindividual spatial and genetic information. J Hered 96:722–724

    Article  PubMed  CAS  Google Scholar 

  • Miller EJ, Eldridge MDB, Cooper DW, Herbert CA (2010) Dominance, body size and internal relatedness influence male reproductive success in eastern grey kangaroos (Macropus giganteus). Reprod Fertil Dev 22:539–549

    Article  PubMed  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–291

    Article  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. II. J Mol Evol 19:153–170

    Article  PubMed  CAS  Google Scholar 

  • Öckinger E, Schweiger O, Crist TO, Debinski DM, Krauss J, Kuussaari M, Petersen JD, Pöyry J, Settele J, Summerville KS, Bommarco R (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Lett 13:969–979

    PubMed  Google Scholar 

  • O’Neill RJW, Eldridge MDB, Crozier RH, Marshall Graves JA (1997) Low levels of sequence divergence in rock wallabies (Petrogale) suggest a lack of positive directional selection in Sry. Mol Biol Evol 14(3):350–353

    Article  PubMed  Google Scholar 

  • Osborne MJ, Christidis L (2001) Molecular phylogenetics of Australo-Papuan possums and gliders (family Petauridae). Mol Phylogenet Evol 20:211–224

    Article  PubMed  CAS  Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    Article  PubMed  CAS  Google Scholar 

  • Paplinska JZ (2006) Faecal DNA analysis of Petrogale penicillata in Kangaroo Valley. Final report for NSW Parks and Wildlife Service. New South Wales National Parks and Wildlife Service, Sydney

    Google Scholar 

  • Peacock MM, Smith AT (1997) The effect of habitat fragmentation on dispersal patterns, mating behavior, and genetic variation in a pika (Ochotona princeps) metapopulation. Oecologia 112:524–533

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Piggott MP, Taylor AC (2003) Extensive evaluation of faecal preservation and DNA extraction methods in Australian native and introduced species. Aust J Zool 51:341–355

    Article  CAS  Google Scholar 

  • Piggott MP, Banks SC, Taylor AC (2006a) Population structure of brush-tailed rock-wallaby (Petrogale penicillata) colonies inferred from analysis of faecal DNA. Mol Ecol 15:93–105

    Article  PubMed  CAS  Google Scholar 

  • Piggott MP, Banks SC, Stone N, Banffy C, Taylor AC (2006b) Estimating population size of endangered brush-tailed rock-wallaby (Petrogale penicillata) colonies using faecal DNA. Mol Ecol 15:81–91

    Article  PubMed  CAS  Google Scholar 

  • Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  PubMed  CAS  Google Scholar 

  • Pope LC, Sharp A, Moritz C (1996) Population structure of the yellow-footed rock-wallaby Petrogale xanthopus (Gray, 1854) inferred from mtDNA sequences and microsatellite loci. Mol Ecol 5:629–640

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Potter S, Eldridge MDB, Taggart DA, Cooper SJB (2012a) Multiple biogeographic barriers identified across the monsoon tropics of northern Australia: phylogeographic analysis of the brachyotis group of rock-wallabies. Mol Ecol 21:in press

  • Potter S, Cooper SJB, Metcalfe CJ, Taggart DA, Eldridge MDB (2012b) Phylogenetic relationships of rock-wallabies, Petrogale (Marsupialia: Macropodidae) and their biogeographic history within Australia. Mol Phylogenet Evol 62:640–652

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Prugh LR, Hodges KE, Sinclair ARE, Brashares JS (2008) Effect of habitat area and isolation on fragmented animal populations. Proc Natl Acad Sci USA 105:20770–20775

    Article  PubMed  CAS  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43(2):258–275

    Article  Google Scholar 

  • Rambaut A (1996) Se-Al: Sequence Alignment Editor, available at http://tree.bio.ed.ac.uk/software/seal/

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201

    Article  PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Read JL, Ward MJ (2010) Warru recovery plan: recovery of Petrogale lateralis MacDonnell Ranges race in South Australia, 2010–2020. Adelaide

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Ruibal M, Peakall R, Claridge A, Firestone K (2009) Field-based evaluation of scat DNA methods to estimate population abundance of the spotted-tailed quoll (Dasyurus maculatus), a rare Australian marsupial. Wildl Res 36:721–736

    Article  CAS  Google Scholar 

  • Slatkin M (1994) Gene flow and population structure. In: Real LA (ed) Ecological genetics. Princeton University Press, Princeton, pp 3–17

    Google Scholar 

  • Smith JNM, Hellmann JJ (2002) Population persistence in fragmented landscapes. Trends Ecol Evol 17:397–399

    Article  Google Scholar 

  • Spencer PBS, Marsh H (1997) Microsatellite DNA fingerprinting confirms dizygotic twinning and paternity in the Allied Rock-wallaby, Petrogale assimilis (Marsupialia: Macropodidae). Aust Mammal 19:279–280

    Google Scholar 

  • Spencer PBS, Odorico DM, Jones SJ, Marsh HD, Miller DJ (1995) Highly variable microsatellites in isolated colonies of the rock-wallaby (Petrogale assimilis). Mol Ecol 4:523–525

    Article  PubMed  CAS  Google Scholar 

  • Spencer PBS, Adams M, Marsh H, Miller DJ, Eldridge MDB (1997) High levels of genetic variability in an isolated colony of rock-wallabies (Petrogale assimilis): evidence from three classes of molecular markers. Aust J Zool 45:199–210

    Article  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Stow AJ, Sunnucks P (2004) Inbreeding avoidance in Cunningham’s skinks (Egernia cunninghami) in natural and fragmented habitat. Mol Ecol 13:443–447

    Article  PubMed  CAS  Google Scholar 

  • Stow AJ, Sunnucks P, Briscoe DA, Gardner MG (2001) The impact of habitat fragmentation on dispersal of Cunningham’s skink (Egernia cunninghami): evidence from allelic and genotypic analyses of microsatellites. Mol Ecol 10:867–878

    Article  PubMed  CAS  Google Scholar 

  • Swofford D (2002) PAUP*. 4.0b10 edn. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Taylor AC, Cooper DW (1998) A set of tammar wallaby (Macropus eugenii) microsatellites tested for genetic linkage. Mol Ecol 7:925–926

    Article  PubMed  CAS  Google Scholar 

  • Telfer WR, Eldridge MDB (2010) High levels of mitochondrial DNA divergence within short-eared rock-wallaby (Petrogale brachyotis) populations in northern Australia. Aust J Zool 58(2):104–112

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol 2:377–379

    Google Scholar 

  • Van Dyck S, Strahan R (2008) The mammals of Australia, 3rd edn. New Holland, Sydney

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Walker FM, Sunnucks P, Taylor AC (2008) Evidence for habitat fragmentation altering within-population processes in wombats. Mol Ecol 17:1674–1684

    Article  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Woinarski JCZ (1992) Biogeography and conservation of reptiles, mammals and birds across north-western Australia: an inventory and base for planning an ecological reserve system. Wildl Res 19:665–705

    Article  Google Scholar 

  • Woinarski JCZ, Milne DJ, Wanganeen G (2001) Changes in mammal populations in relatively intact landscapes of Kakadu National Park, Northern Territory Australia. Aust Ecol 26:360–370

    Article  Google Scholar 

  • Wolff JO, Schauber EM, Edge WD (1997) Effects of habitat loss and fragmentation on the behavior and demography of gray-tailed voles. Conserv Biol 11:945–956

    Article  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Article  Google Scholar 

  • Zenger KR, Cooper DW (2001) A set of highly polymorphic microsatellite markers developed for the eastern grey kangaroo (Macropus giganteus). Mol Ecol 1:98–100

    Article  CAS  Google Scholar 

  • Zenger KR, Eldridge MDB, Pope LC, Cooper DW (2003) Characterisation and cross-species utility of microsatellite markers within kangaroos, wallabies and rat kangaroos (Macropodoidea: Marsupialia). Aust J Zool 51:587–596

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank: Cecilia Myers, Henry Cook, Alexander Dudley, George Madani, Raz Martin, Liberty Olds, Jim Reside, Michael Elliott, Kathy Saint, Melanie Lancaster, Emily Miller, Jeremy Austin, David Pearson, Lauren Brown, Bill Stewart, Mitchell River and Miriuwung Gajerrong rangers and Department of Environment and Conservation staff for providing samples, assisting with sample collection, mapping or laboratory protocols. We are also grateful to Craig Moritz and Mike Westerman for helpful comments on a thesis version of the manuscript. This research was supported by funding from The Dunkeld Pastoral Company Pty. Ltd., ANZ Holsworth Wildlife Research Fund, The Australian Museum, The University of Adelaide and South Australian Museum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally Potter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potter, S., Eldridge, M.D.B., Cooper, S.J.B. et al. Habitat connectivity, more than species’ biology, influences genetic differentiation in a habitat specialist, the short-eared rock-wallaby (Petrogale brachyotis). Conserv Genet 13, 937–952 (2012). https://doi.org/10.1007/s10592-012-0342-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-012-0342-1

Keywords

Navigation